
Opole University of Technology
Faculty of Electrical Engineering, Automatic Control and Informatics

Automatic Diagnosis of the Patient’s Knee Joint

Using Selected Methods of Vibroarthrographic

Signal Analysis

Author: mgr inż. Adam Łysiak

Supervisor: Dr hab. inż. Mirosław Szmajda
Assistant supervisor: Dr hab. Dawid Bączkowicz

Opole, September 2023



ii



Streszczenie

Wpływ przeciążeń oraz siedzącego trybu życia na stan stawów kolanowych jest związany z
zależnością struktury stawu od sił działających na jego powierzchnie oraz od regularnego
ruchu. Zarówno nadmierne obciążanie powierzchni stawowych, jak i brak aktywności őzy-
cznej może prowadzić do degradacji chrząstki i redukcji ilości i jakości płynu stawowego. Małe
uszkodzenia niepowodujące bólu mogą z czasem przyczyniać się do poważniejszych zaburzeń
stawu kolanowego. Wibroartograőa (VAG) jest metodą obrazowania jakości funkcjonowania
stawu poprzez pomiar wibracji generowanych podczas ruchu, tworząc sygnał VAG. Pomimo
znacznej liczby badań dotyczących przetwarzania sygnału VAG, w literaturze nadal brakuje
zgody co do niektórych metod przetwarzania i cech ekstrahowanych z sygnału VAG.

W niniejszej dysertacji przedstawione zostały badania sygnałów VAG zarejestrowanych ze
stawów kolanowych należących do pięciu klas: trzech stopni chondromalacji rzepki, choroby
zwyrodnieniowej oraz grupy kontrolnej zawierającej zdrowe stawy kolanowe. W tezie pracy
zawarto, że metody cyfrowego przetwarzania sygnałów w kontekście analizy sygnałów VAG,
szczególnie w dziedzinie czasu, częstotliwości oraz czasowo-częstotliwościowej, umożliwią ek-
strakcję cech prowadzących do wyższej niż obecnie (0.69) dokładności klasyőkacji. Teza
została udowodniona poprzez szczegółową analizę wyodrębnionych cech sygnału, optymal-
izację cech parametrycznych oraz wybór najbardziej informatywnego zestawu cech. Naj-
dokładniejszym klasyőkatorem okazała się Liniowa Maszyna Wektorów Nośnych uczona z
wykorzystaniem 110 cech, osiągając dokładność klasyőkacji na poziomie 0.80.

Ograniczenia badań obejmują zastosowanie stosunkowo prostych metod przetwarzania
wstępnego, potencjalnie ograniczając informatywność sygnału. Ponadto, informatywne cechy
zostały wybrane na podstawie ich średniej możliwości różnicowania par klas. Wykorzystanie
informacji o konkretnych parach klas mogłoby poprawić wyniki klasyőkacji. Ograniczeniem
jest także ekstrakcja cech czasowo-częstotliwościowych przeprowadzona na całym spektrum.
Ograniczenie analiz tylko do informatywnych zakresów częstotliwości mogłoby poprawić
wyniki. Wreszcie, brak informacji o fazie ruchu stawu kolanowego zsynchronizowanych z
sygnałem VAG może być uznany za ograniczenie, ponieważ w poprzednich badaniach, seg-
mentacja sygnału prowadziła do podniesienia informatywności ekstrahowanych cech.

Z przeprowadzonych badań wyciągnięte zostały następujące wnioski. Cechy wyekstra-
howane z dziedziny czasu sygnału őltrowanego, zazwyczaj są bardziej informatywne niż te
obliczone na sygnale surowym lub pochodnej sygnału. Najbardziej informatywny zakres
częstotliwości to ok. 10 Hz do 350 Hz. Algorytm Maximum Relevance Minimum Redun-
dancy dostarcza bardziej informatywnego zestawu cech, w porównaniu z Analizą Głównych
Składowych. Postępująca degeneracja stawu kolanowego zwykle prowadzi do wzrostu mocy,
zmienności i złożoności sygnału VAG, oraz spadku cech mierzących efekt długiej pamięci.
W przyszłych badaniach wartościowe byłoby rozważenie niższych częstotliwości próbkowa-
nia, rozszerzenie sygnału informacjami o fazie ruchu i przeprowadzania analizy czasowo-
częstotliwościowej w ściśle określonym zakresie częstotliwości.
Słowa kluczowe: wibroartrogeraőa, VAG, przetwarzanie sygnału, ekstrakcja cech, analiza
czasowo-częstotliwościowa, system ekspercki, klasyőkacja, automatyczna diagnostyka.
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Abstract

The impact of overload and a sedentary lifestyle on the health of knee joints can be linked
to the joint structure’s reliance on the forces acting on its surface and on regular movement.
Both excessive loading of the joint and absence of physical activity can lead to the cartilage
degradation and reduction in the amount and quality of synovial ŕuid. Minor damages to
the cartilage that may not cause pain, can contribute to more severe knee joint conditions.
Vibroarthrography (VAG), an imaging method, assesses joint function quality by measuring
vibrations generated during motion, producing a VAG signal. However, despite signiőcant
body of VAG-related studies, there is still a lack of consensus regarding some of the speciőc
methods and features extracted from the VAG signal.

This dissertation presents an extensive examination of VAG signals derived from őve
classes of knee joint conditions. These include three Chondromalacia Patellae stages, one
Osteoarthritis class, and a control group consisting of healthy knee joints. The thesis of
this work proposes that the digital signal processing methods, in the context of VAG signal
analysis, speciőcally in the time domain, frequency domain, and time-frequency domain, will
enable extraction of features that lead to a classiőcation accuracy higher than the current
state-of-the-art (0.69). It was achieved through a thorough analysis of extracted signal
features, optimization of parametric features, and selection of the most informative feature
set. Ultimately, the most accurate classiőer proved to be Linear Support Vector Machine
trained on 110 features, achieving an accuracy of 0.80.

The study’s limitations include the use of relatively simple preprocessing methods, which
might have limited the extracted signal’s information. Moreover, informative features were
selected based on their average class-pairs differentiation potential. Utilizing information
about speciőc class pairs could improve the classiőcation results. Another limitation is
that the time-frequency feature selection was conducted on the whole spectrum. Focusing
the analyzes on the informative frequency ranges only could potentially further improve
the results. Finally, the lack of explicit information about the knee joint movement phase
synchronized with the VAG signal can be considered a limitation, as segmentation of the
signal has been shown to result in more informative features in previous studies.

Following conclusions could be derived from the conducted research. Time domain fea-
tures, calculated on a őltered signal, generally are more informative than the ones calcu-
lated on raw or derivative signals. In the frequency domain, the most informative range
ranges from 10 Hz to 350 Hz. The Maximum Relevance Minimum Redundancy algorithm
provides more informative feature set, as compared to the Principal Component Analysis.
The progression of knee joint conditions typically results in an increase in the VAG sig-
nal’s power, variability, and complexity measures, along with a decline in features measuring
long-range dependencies. For future studies, it would be beneőcial to consider lower sam-
pling frequencies, augmenting the signal with movement phase information, and conducting
time-frequency analysis on a speciőc frequency range.
Keywords: vibrorathrography, VAG, signal processing, feature extraction, time-frequency
analysis, expert system, classiőcation, automatic diagnosis.
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Chapter 1

Introduction

In this chapter, a broad introduction to the whole dissertation will be included, with the
motivation and justiőcation of the research, speciőc goals and thesis of this work, as well as
its structure.

1.1 Research motivation and justiőcation

A sedentary lifestyle, being one of the most prevalent issues in the current times, signiőcantly
impacts the human knee joint health [1]. This is caused by the joint’s structure and reliance
on regular movement. The knee, a predominantly hinge joint, consists of hyaline cartilage
and bone, largely dependent on a regular load for nutrient diffusion and metabolite removal.
The absence of physical activity due to a sedentary lifestyle leads to a lack of regular load on
the joint, leading to cartilage degradation. Additionally, inactivity reduces the production
and circulation of synovial ŕuid, a critical joint lubricant, causing joint stiffening [2].

One unique characteristic of the hyaline cartilage is its lack of nerves [2]. Due to this,
minor injuries or wear-and-tear to the cartilage usually do not cause any immediate pain or
discomfort, making them easy to overlook in their initial stages. Over time, however, these
minor injuries can compound, leading to cartilage thinning or wear, which can trigger more
signiőcant knee joint conditions.

Traditional imaging techniques, like the x-rays [3] or magnetic resonance imaging [4]
enable assessment of the joint’s structure, providing an image of the static joint. On the
other hand, Vibroarthrography (VAG) is an imaging technique, that quantiőes quality of
the joint’s function, by registering vibrations generated by the knee joint in motion. The
examination provides a signal of those vibrations, called the vibroarthrogram. There is
a signiőcant body of work focusing on VAG processing methods, usually in the screening
context, i.e., differentiation between healthy and (somehow) damaged knee joint. However,
there is still a lack of consensus in the literature about speciőc processing techniques and
exact features extracted from the VAG signal.

Therefore, in the current work, a plethora of VAG signal features were extracted. More-
over, their informativeness was thoroughly analyzed and interpreted. Those analyzes led
to selection of speciőc features that allowed classiőcation results better than current state-
of-the-art. A number of important conclusions were derived, including ones related to the
general analysis of the VAG signal, changes in the signal with progressing degeneration of
knee joint, and potentially fruitful directions for the future VAG-related research.
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1.2 Thesis and goals of the work

The thesis of the work is as follows. The application of digital signal processing methods in
vibroarthrographic signal analysis, speciőcally in the time domain, frequency domain, and
time-frequency domain, will enable extraction of features allowing the classiőcation of knee
joint conditions with accuracy higher than the current state-of-the-art (0.69).

Relating to the thesis, the following main goals were set.
1. Analysis of signal features used in VAG őeld and identiőcation of parametric features,

which parameters can be optimized in terms of informativeness.
2. Feature extraction from the signal in the time domain.
3. Feature extraction from the signal in the frequency domain.
4. Feature extraction from the signal in the time-frequency domain.
5. Selection of the feature informativeness’ measure.
6. Selection of the most informative feature set.
7. Selection of a machine learning model allowing for classiőcation of the extracted fea-

tures with accuracy higher than 0.69, achieved by Kręcisz and Bączkowicz [5].
In addition, the following minor goals were deőned.
1. Comparison of selected preprocessing methods in the context of feature informative-

ness.
2. Analysis and interpretation of the obtained features’ informativeness.
3. For parametric features, analysis of the impact of feature parameters on their informa-

tiveness.
4. Comparative analysis of spectrum estimation methods in the context of feature infor-

mativeness.
5. Comparative analysis of spectrogram parameters in the context of feature informative-

ness.
6. Comparative analysis of selected dimensionality reduction methods in the context of

classiőcation accuracy.
7. Comparative analysis of machine learning models in the context of classiőcation accu-

racy.

1.3 Structure of the work

The work is divided into three parts. The őrst part constitutes an introduction to the study
and vibroarthrography. The őrst chapter, i.e., the current one, contains an introduction to
the work. Chapter two describes a vibroarthrographic signal, or a vibroarthrogram. The
chapter begins with a brief description of the knee joint. Next, the conditions analyzed in
this study are described, along with the potential for diagnosis using traditional methods
and vibroarthrography. The chapter ends with a brief description of the speciőc signal base
used in this study.

The third chapter is a review of methods used in the VAG őeld, at every stage of a signal
processing. The chapter begins with a brief description of the typical signal processing
pipeline. Then, an introduction to vibroarthrography is presented, in a literature context.
Following sections focus on signal acquisition, description of various sensors used, methods
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of preprocessing, feature extraction, dimensionality reduction, and, őnally, classiőcation.
The section on feature extraction is written rather concisely, because major part of this
work is focused on a feature extraction, and speciőc methods are described in more detail
in respective chapters. The third chapter concludes the őrst part of the work, i.e., the
introduction.

The second part of the study includes a detailed description of the methods used in the
work. It begins with Chapter 4, devoted to preprocessing. The chapter contains a brief
description of normality and stationarity, followed by a description and justiőcation of the
methods used, namely the Butterworth őlter and differentiation. The chapter concludes with
a comparison of selected methods in the context of the work.

Chapter 5 contains a description of the signal features extracted from the time domain. It
begins with a section devoted to basic statistical methods. Next, rolling, differentiation and
time domain frequency features are described. In the next section, self-similarity measures,
i.e., ones based on the Autocorrelation Function and the Detrended Fluctuation Analysis,
are described. The last section delves into the Phase Space Reconstruction and measures
deőned on its basis, such as the complexity features, Recurrence Quantiőcation Analysis,
and selected parametric entropy measures, i.e., the Approximate and Sample Entropy. For
many parametric features, an in-depth analysis of the impact of parameters on feature in-
formativeness in the context of classiőcation is conducted.

The sixth chapter contains a description of frequency analysis. The őrst section is an
introduction to Power Spectral Density estimation, a description of several most popular
methods of the estimation, and the methodology implemented to compare these methods
in the context of feature extraction. The next section introduces the Frequency Range
Map, which is an intuitive way of visualizing informativeness of individual frequency ranges,
measured with various features. The last section describes frequency features not based
on the Frequency Range Maps, and also includes a description of the parameters of these
features.

Chapter 7 contains a description of the time-frequency analysis. The őrst section de-
scribes the spectrogram, its parameters, and the methodology for comparing these parame-
ters in the context of feature extraction. The next chapter describes the Spectral Fluctuation
Signals, which are generated by reducing one dimension of the spectrogram. The chapter
ends with a description of time features, which are calculated from each Spectral Fluctuation
Signal.

In chapter eight, methods for reducing dimensionality of the features obtained in previous
chapters and classifying signals based on reduced-dimensionality features are discussed. The
őrst section introduces the method of feature quality evaluation, or, in other words, method
of quantifying its informativeness in the context of classiőcation. The second section provides
a summary of all features obtained in previous chapters, as well as two methods for reducing
dimensionality of these features: the Maximum Relevance Minimum Redundancy algorithm
and the Principal Component Analysis. The last section is dedicated to the description of
classiőcation algorithms used in this study. Chapter eight is the last chapter of the second
part, concerning methods.

In the third part of the dissertation, the results of analyzes corresponding to the chapters
of the second part are presented and discussed. In Chapter 9, results of the preprocessing
methodology are discussed. Chapter 10 includes the results of signal analysis in the time
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domain. The informativeness of all features is thoroughly discussed. Parametric features
are additionally analyzed in terms of the inŕuence of parameters on the informativeness.
Additionally, the most informative features are analyzed in terms of their ability to distin-
guish between individual class pairs analyzed in the dissertation. Next, the results of the
correlation analysis of time domain features are presented and discussed. The chapter ends
with a summary and speciőc conclusions that have been drawn from the conducted analyzes.

In Chapter 11, results of the frequency analysis are presented. In the őrst section, results
of a comparison of selected spectrum estimation methods are included and discussed. In the
next section, Frequency Range Maps are visualized and analyzed in terms of informativeness
of selected frequency ranges. Then, informativeness of frequency features not following
the Frequency Range Map methodology is presented. Similar to the previous chapter, the
most informative features are analyzed in terms of distinguishing individual class pairs.
The next section includes the results of a correlation analysis of frequency features and
their interpretation. In the next section, the summary, the author attempted to answer
the question of which frequency range is the most informative, and why. The őnal section
contains speciőc conclusions derived from the conducted research.

In Chapter 12, the results of the time-frequency analysis are presented. The chapter
begins with a section on the results of research from a frequency perspective. The informa-
tiveness of selected features is analyzed, and as in previous chapters, the most informative
features are analyzed for their capability to differentiate speciőc class pairs. The next sec-
tion presents the results from the perspective of a time domain. In the following section, the
inŕuence of spectrogram parameters on the informativeness of the features is discussed. The
last two sections constitute a summary of time-frequency analyzes and conclusions derived
from them.

Chapter 13 includes the results of dimensionality reduction and classiőcation. The őrst
section is devoted to dimensionality reduction, comparison of the Maximum Relevance Mini-
mum Redundancy and the Principal Component Analysis methods, and the results of dimen-
sionality reduction in this study. In the next section, the results of VAG signal classiőcation
using a reduced set of features are described. The őnal section contains a summary and
conclusions.

The last, fourteenth chapter, includes a summary of all the conducted studies and con-
clusions drawn from them. The contribution of this work to the őeld of vibroarthrography is
summarized, and the limitations of the conducted studies are discussed. Finally, potentially
fruitful directions for future studies are suggested.



Chapter 2

Description of the vibroarthrogram

In this chapter, a general description of the vibroarthrogram will be provided. The chapter
will begin with the anatomy and physiology of the knee. Then, the speciőc joint conditions
analyzed in this work will be described, followed by a description of the standard methods
used for their diagnosis. Finally, vibroarthrography will be brieŕy described, along with the
speciőc signals analyzed in this work.

2.1 Knee anatomy and physiology

In this section, an overview of the knee joint will be provided, as well as the forces acting
within it.

2.1.1 Overview of the Knee Joint

The knee joint, classiőed as a hinge joint, is among the most complex and vital joints in
the human body, playing a signiőcant role in weight-bearing activities, such as walking,
running, and jumping [2]. Primarily composed of three bones, the femur (thighbone), the
tibia (shinbone), and the patella (kneecap), the knee joint allows for ŕexion and extension
movements, as well as minimal rotation in the ŕexed position [6]. The ends of the femur and
tibia, along with the posterior surface of the patella, are covered with a layer of articular
cartilage that helps to reduce friction and absorb shock during motion [6].

Four major ligaments stabilize and connect the bones in the knee joint: the Anterior
Cruciate Ligament (ACL), the Posterior Cruciate Ligament (PCL), the Medial Collateral
Ligament (MCL), and the Lateral Collateral Ligament (LCL) [2]. The ACL and PCL prevent
excessive anterior and posterior translation of the tibia relative to the femur, while the
MCL and LCL provide stability against forces that would push the knee inward or outward,
respectively [2]. Working together, these ligaments ensure the stability and integrity of the
knee joint during various movements and activities [6].

Additionally, the knee joint contains two C-shaped cartilage-like structures called menisci,
which are the medial and lateral menisci [2]. These menisci provide stability to the joint and
help in distributing the load across the articular surfaces of the tibia and femur, effectively
reducing the contact pressure and minimizing wear on the articular cartilage. Furthermore,
the menisci serve as secondary shock absorbers, providing an additional layer of protection
for the joint [2].

A noteworthy characteristic of hyaline cartilage, including the articular cartilage in the
knee joint, is its near-complete absence of nerves [2]. This feature has signiőcant implications
for the detection and perception of injuries in the cartilage. Due to the lack of nerve endings,

6



2.2. KNEE JOINT CONDITIONS CLASSIFIED IN THIS WORK 7

minor damage or micro-injuries to the cartilage often do not cause pain, making them largely
unnoticed by the individual. This absence of pain sensations can lead to the continuous
use and loading of the affected joint, potentially increasing the damage and causing the
cartilage to degrade over time. As a result, knee joint issues like chondromalacia patellae
and osteoarthritis may develop slowly while unnoticed, becoming apparent only when the
damage has reached a more serious stage [2].

2.1.2 Forces Within the Knee Joint

The knee joint experiences various forces during movement, including compressive, tensile,
and shear forces, as well as friction [2]. Compressive forces occur when the joint surfaces are
pushed together, while tensile forces result from the joint surfaces being pulled apart. Shear
forces, on the other hand, occur when the joint surfaces slide against each other [2]. The
ligaments, muscles, and other soft tissues surrounding the knee joint play a crucial role in
managing these forces by providing stability and distributing the load across the joint [6,7].

Friction in the knee joint is minimized by the presence of cartilage and synovial ŕuid,
which provide a smooth, low-friction surface for movement [2]. Factors affecting friction
within the knee joint include joint alignment, cartilage wear, and the properties of synovial
ŕuid, such as viscosity and lubrication [2]. Increased friction can have several consequences,
including joint pain, inŕammation, and degeneration, which may contribute to the develop-
ment of knee joint conditions such as osteoarthritis [2, 8].

During knee joint motion, friction between sliding joint surfaces and surrounding tissues
generates vibrations. These vibrations can be inŕuenced by various factors, such as the health
of the cartilage, joint biomechanics, and muscle activity. For instance, changes in cartilage
properties due to wear or degradation may result in altered vibration patterns. Similarly,
variations in joint biomechanics and muscle activation can also impact the generation and
propagation of vibrations within the knee joint [9].

The study of these vibrations is called vibroarthrography, and it aims to noninvasively
evaluate knee joint health and function by analyzing the vibration signals measured on the
skin surface [9]. The measured vibration signal is a composite, created by various components
such as joint surface vibrations, muscle contractions, and soft tissue vibrations [10]. Joint
surface vibrations originate from the interaction between the articulating surfaces of the knee
joint, while muscle contractions produce vibrations as the muscles activate and generate
force. Soft tissue vibrations result from the transmission and reŕection of the vibrations
through the surrounding tissues, such as tendons, ligaments, and skin. By examining the
characteristics of the composite vibration signal, speciőc signal features can be identiőed and
associated with healthy and unhealthy knee joints [5, 10].

2.2 Knee joint conditions classiőed in this work

In this section, two speciőc conditions will be described, namely the Chondromalacia Patellae
and the Osteoarthritis, as well as their respective grades and, őnally, their comparison.
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2.2.1 Chondromalacia Patellae

Chondromalacia Pattellae (CMP) is a condition characterized by the softening and deteri-
oration of the cartilage on the underside of the patella [11]. The pathophysiology of this
condition involves the breakdown of the hyaline cartilage, leading to increased friction and
altered joint mechanics. Some factors contributing to the development of CMP include mus-
cle weakness, abnormal wear and tear of the cartilage and patellar tracking, i.e., kneecap
moving out of place in bending or straightening motion [11]. The deterioration of the patel-
lar cartilage in CMP leads to increased joint friction due to abnormal patellofemoral joint
mechanics and increased joint stress and pressure [11]. As a result, the vibrations generated
by the joint are affected by changes in contact between the joint surfaces [5].

The severity of the CMP is graded the Outerbridge Classiőcation System [12], consisting
of őve stages. Stage 0 denotes normal cartilage. Stage I is characterized by an intact but
soft, swollen, and inŕamed articular surface. In the second stage, there is a presence of
fractures and fragmentation of the articular surface, with an area measuring half an inch or
less in diameter. Stage III refers to localized, partial thickness cartilage damage, with an
area measuring more than half an inch in diameter, and Stage IV indicates a full-thickness
defect that extends down to the subchondral bone [11]. While arthroscopic evaluation of
the knee is the gold standard for assessing the grade of articular cartilage wear, Magnetic
Resonance Imaging (MRI) or radiography can also be used to classify the degree of cartilage
wear. However, those methods are not as accurate as the visual assessment performed during
arthroscopy.

2.2.2 Osteoarthritis

oa is a complex joint disease characterized by the progressive loss of articular cartilage, which
can be caused by a range of factors including obesity, aging, and joint injuries. Although
cartilage loss is a critical component of oa, the disease is not limited to the cartilage and
involves changes in the entire joint [13].

The pathophysiology of the oa involves the degradation of articular cartilage, as well as
changes in the biomechanics of the joint and inŕammation. As oa progresses, joint space
narrowing can occur, and bone remodeling may take place as the joint attempts to adapt
to the changing conditions [13]. The impact of oa on joint friction involves changes in the
properties of synovial ŕuid, which can become thinner and less effective at lubricating the
joint. This can result in increased friction, which can lead to pain, stiffness, and reduced
joint motion. Consequently, the vibrations generated by the joint are affected by altered
joint loading patterns and the effects of joint instability and misalignment [10,14,15].

2.2.3 Comparison of Chondromalacia Patellae and Osteoarthritis

Both CMP and oa have similar impacts on joint friction, as both conditions result in carti-
lage degradation and increased joint stress and pressure [11, 13]. However, chondromalacia
patellae primarily affects the patellar cartilage, while osteoarthritis affects articular cartilage
throughout the joint [13].
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The impact of both conditions on vibrations generated by the joint is also similar, as both
cause changes in contact between joint surfaces and altered joint mechanics due to cartilage
loss and joint instability. However, chondromalacia patellae may produce more localized
vibrations due to patellofemoral joint involvement, while osteoarthritis may generate more
widespread vibrations due to the involvement of multiple joint surfaces.

2.3 Diagnosis methods and imaging techniques

During the clinical examination of a patient with suspected knee joint condition, such as
chondromalacia patellae or osteoarthritis, a physical examination is initially performed, in-
volving inspection, palpation, and assessment of joint mobility [16]. Furthermore, the range
of motion of the knee joint is evaluated, which provides valuable information about joint func-
tion and possible restrictions [17]. Special tests designed for knee joint evaluation can be
utilized to assess the integrity of ligaments, menisci, and other joint structures, contributing
to a comprehensive assessment of the joint’s condition [17].

Upon completing the clinical examination, healthcare professionals may decide to employ
imaging techniques to obtain a more in-depth understanding of the knee joint’s structure.
One such technique is X-ray imaging [3], a widely used diagnostic method for assessing bone
and joint abnormalities. While it is limited in its ability to visualize soft tissues, such as
cartilage, it can reveal joint space narrowing, bone spurs (osteophytes), and other bony
changes indicative of osteoarthritis [18]. However, X-ray imaging is less effective in detecting
chondromalacia patellae, as it mainly affects the cartilage rather than the bone.

Another imaging technique is the MRI [4]. It is an imaging technique that offers detailed
visualization of soft tissues, including cartilage, ligaments, and menisci. It is particularly
useful in detecting CMP, as it can reveal cartilage deterioration and other abnormalities
related to this condition [18]. MRI also enables the assessment of oa by showing changes in
articular cartilage and joint space narrowing, among other features [18]. The advantages of
MRI include its high-resolution images and non-invasive nature.

Computed Tomography (CT) is another tool widely used in knee joint imaging [19].
The CT scans provide cross-sectional images of the knee joint, allowing the visualization
of bone and some soft tissue structures. While CT scans can show bone changes related
to osteoarthritis, such as joint space narrowing and osteophytes, they are less effective in
visualizing cartilage and other soft tissues [18]. As a result, CT scans have limited utility in
diagnosing chondromalacia patellae.

Another method used for imaging the knee joint is the Ultrasound Imaging [20]. It uses
high-frequency sound waves to produce images of soft tissues, such as cartilage, ligaments,
and tendons. While it can provide some information about the knee joint structures, its abil-
ity to visualize deeper tissues, such as cartilage, is limited in comparison to the MRI [18].
Ultrasound may help to detect joint effusion, synovial thickening, and other abnormalities
related to oa, but its effectiveness in diagnosing CMP is restricted due to its limited visual-
ization of cartilage.

It is worth noting that the mentioned imaging methods, while effective in providing valu-
able information about the knee joint’s structure, can be time-consuming, expensive, and
potentially uncomfortable for the patient. Clinical examinations and imaging techniques,
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such as X-rays, MRI, CT scans, and ultrasound, require specialized equipment and profes-
sional interpretation, which can result in signiőcant healthcare costs. Additionally, patients
may experience discomfort during the examination process, particularly when undergoing
MRI or CT scans, which involve enclosed spaces and potentially long examination times.

2.4 Vibroarthrography

Imaging techniques, such as X-ray, MRI, CT, and ultrasound, play a vital role in the di-
agnosis and assessment of knee joint conditions, as they allow for the visualization of joint
structures in a static, non-moving state. These qualities enable the examination of bone
and soft tissue morphology, joint space, and other structural features that can be indicative
of conditions such as chondromalacia patellae and osteoarthritis. However, their inherent
nature as static assessments means that they can only provide limited information about the
dynamic behavior of the knee joint during movement.

In contrast, VAG is a dynamic technique that captures information during joint motion,
offering insights into the real-time interactions between joint components and their biome-
chanical function [10]. VAG focuses on detecting and analyzing vibrations generated by the
knee joint as it moves, which can provide valuable information about quality of the joint’s
function. The dynamic nature of VAG allows it to capture aspects of joint function that
may not be clearly visible using static imaging methods.

2.5 Vibroarthrograms studied in this work

Vibroarthrograms used in this work were obtained and őrstly analyzed by Kręcisz and
Bączkowicz [5]. Signals were acquired from a total of 184 knee joints. Division into spe-
ciőc classes was included in Table 2.1. Diagnoses were done by a single radiologist blinded
to the patients’ symptoms, using X-ray imaging.

Table 2.1: Condition classes analyzed in the research.

signal class signal count description
ctrl 66 Control Group
cmp1 26 Stage I Chondromalacia Patellae
cmp2 30 Stage II Chondromalacia Patellae
cmp3 36 Stage III Chondromalacia Patellae
oa 26 Osteoarthritis

All subjects were subjected to standard medical interviews and physical examinations.
Classiőcation of patients with stage I–III CMP was carried out based on the Outerbridge
Classiőcation System [12]. Concurrently, patients diagnosed with oa exhibited mild to mod-
erate knee oa, corresponding to grade II and III in the Kellgren-Lawrence grading system [21],
with a condition duration exceeding 2 years.

In order to prevent signal artifacts stemming from conditions other than chondral lesions,
the study excluded individuals with a prior history of knee surgeries, fractures or signiőcant
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instabilities, meniscal tears, or patellar maltracking. Furthermore, participants with pro-
nounced muscle weakness, signiőcantly swollen knees or restricted range of motion in the
knee joint (within 0◦ to 100◦), were also excluded from the study due to the methodology of
the VAG assessment.

Throughout the assessment, participants were seated and directed to perform a total of
four complete cycles of knee joint extension and ŕexion alternation, with a motion range
spanning from 90◦ to 0◦ and back to 90◦, all cycles lasting 6.144 seconds total. A metronome
set at 82 beats per minute was employed to facilitate consistent and repeatable movements.
To capture the vibration signals produced by the knee joint, an acceleration sensor was
positioned 1 cm above the apex of the patella. Exemplary acceleration attachment, seen
from the front and the side, was shown in Figure 2.1.

Figure 2.1: Exemplary sensor placement.

Figure 2.2: Exemplary VAG signals.

The signals analyzed in this research were obtained using the Brüel & Kjñr 4513B-002
accelerometer and Nexus 2692-C signal ampliőer connected to a computer using an Analog
to Digital Converter (ADC). Each signal was sampled at 10 kHz and lasted exactly 6.144
seconds. Exemplary signals from all condition classes were shown in Figure 2.2.



Chapter 3

Review of the vibroarthrography process-

ing chain

In this chapter, a VAG literature review will be provided. The őrst section will include a
short description of a typical signal processing pipeline. In the next section, an introduction
to vibroarthrography will be provided, in the literature context. Following sections will in-
clude methods used in VAG-related studies, relating to the signal acquisition, preprocessing,
feature extraction, dimensionality reduction and classiőcation.

3.1 Signal processing steps used in automatic diagnostics

The signal processing pipeline for classiőcation tasks usually involves several separate steps,
as illustrated in Figure 3.1. The őrst step, signal acquisition, includes capturing raw sig-
nals using appropriate sensors and sampling techniques. The objective of this stage is the
transformation of the analog signal into a digital one, i.e., to convert continuous physical
quantities into a discrete representation. This stage is vital for ensuring the accuracy and
reliability of the acquired data, which forms the foundation for subsequent analysis.

Figure 3.1: General pipeline used in most signal classiőcation contexts.

Once the signals are acquired, preprocessing is carried out to eliminate noise, artifacts,
and unwanted signal components. This step enhances the signal quality and enables further
processing. It may include various őltering or decomposition techniques, normalization, or
artifacts removal. In general, this step produces signal (or signals) in the same domain as
the input signal (for example, the time domain).

Following preprocessing, feature extraction is used to transform the processed signals
into meaningful and representative features. These features can be used to characterize and
distinguish different classes in the classiőcation task, providing insight into the underlying
patterns and relationships within the data. This step can be thought of as the quantiőcation
of the intuition about the signal, providing speciőc values for the intuitive concepts, such
as frequency content, signal energy, or statistical properties, which contribute to a more
comprehensive understanding of the signal’s behavior and characteristics.

For example, the average value of a signal quantiőes intuition about the baseline be-
havior, or central tendency of a quantity in time. Standard deviation, or variance, provide

12
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direct measure of the variability, or dispersion of signal’s values around the average value.
Low standard deviation value indicates that the signal values are consistently close to the
average, which could be interpreted as a stable and predictable signal. Conversely, a high
standard deviation might imply greater variability, indicating a signal that is more dynamic
or changeable over time.

Since feature extraction step can provide virtually inőnite number of more or less in-
formative features, dimensionality reduction techniques, in a form of feature selection or
transformation, are subsequently applied to reduce the complexity of the feature space. For
instance, in a scenario where height is a feature, it can be recorded in both meters and
inches. These two features are perfectly correlated, because they represent the same char-
acteristic, but recorded in different units. In this case, keeping both features would not add
new information but would unnecessarily increase the dimensionality of the feature space.
Therefore, one of them could be removed, reducing the complexity of the feature set, while
keeping its information content. The removed features do not need to be perfectly correlated
to be removed, and the general intuition about the dimensionality reduction is to keep as
much information as possible, while reducing the dimensionality of the feature space. This
step aims to retain the most information in the least number of features for classiőcation
purposes, thereby improving the efficiency and performance of the subsequent classiőcation
algorithms.

The difference between feature selection and transformation is that feature selection in-
volves selecting a subset of the original features, while feature transformation transforms the
original features into a new, lower-dimensional feature space, typically using statistical or
machine learning methods. The biggest advantage of the feature selection is interpretability.
Informative features selected from the original feature set are not transformed in any way,
which allows them to keep their interpretation, or rationale. Dimensionality reduction algo-
rithms, on the other hand, usually deprive the features of their original interpretations. It
is worth mentioning, that feature selection and transformation algorithms can also be used
sequentially, i.e., őrst selecting the most informative features, and then transforming them
into even lower dimensional representation.

Finally, the classiőcation step utilizes machine learning algorithms to assign the extracted
features to distinct classes. By learning from training data, these algorithms enable accurate
classiőcation or diagnosis. This step can be considered the intelligence of the whole signal
processing pipeline, since it directly draw inferences about a signal, based on the values of its
speciőc features. In general, quality of the classiőcation is highly dependent on the quality of
the features. However, additional factor greatly inŕuencing the classiőcation accuracy is the
selection of the classiőcation algorithm that can utilize speciőc distribution of the features.

Deep learning techniques, particularly when provided with a large number of training
samples, have the potential to replace virtually all explicit steps in the signal processing
pipeline following the signal acquisition. Despite their ability to effectively learn features and
perform classiőcation tasks, there are two main disadvantages associated with deep learning
approaches: the need for a large number of training samples and the poor interpretability
caused by the complex, nonlinear structures of the algorithms. Within these structures, the
transformations and calculations are often hidden, rendering the process opaque. This lack
of transparency in the model’s operation frequently results in difficulty in understanding how
speciőc transformations are made, a phenomenon commonly referred to as the "black box"
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problem [22].

The structure of the following literature review mirrors the organization of the signal
processing pipeline. After the next, VAG introductory section, each section of the review
will focus on one of the pipeline components, discussing the relevant methods, techniques, and
advancements applied in the vibroarthrography őeld. Since this dissertation is focused mostly
on the feature extraction step, the corresponding part of the review will be considerably
less in-depth than parts corresponding to the remaining steps. Speciőc feature extraction
methods will be described in more detail in a following chapters.

3.2 Introduction to vibroarthrography

The őrst publication on vibroarthrography can be dated back to 1902, to "Auscultation of
the Knee Joint" by Dr. William Ernest Blodgett [23]. To listen to the sounds, he used
stethoscope placed on the patella. In the experimental procedure, he ŕexed (up to the
maximum ŕexion) and extended (up to the maximum extension) subject’s leg, without the
heel touching the ground. He moved the leg of the patient himself, in order to minimize
patient’s use of muscles, which could interfere with the joint sounds. He recorded the data
by hand, using dots, dashes and vertical lines, indicating various sounds, such as snapping,
grating or squeaking.

Similar descriptive approaches were used in VAG research until 1970’s, when digital signal
processing started to be implemented in the őeld, for example, by Chu et al. [24]. Analyzed
signals were acquired by microphones and the research focused mostly on the sources of
knee generated noises. Microphone was usually placed at a short distance to the knee [25].
However, signal generated by the knee joint was damped by the skin and highly distorted by
the ambient noises. Therefore, as a direct sensors of the vibrations generated by the knee,
accelerometers were proposed by Mollan et al. [26]. They remain the main VAG acquisition
device used to date.

Up to 1990’s, the digital signal processing methods were implemented in a limited way.
Some studies, for example Kernohan et al. [27, 28] used explicitly extracted features (such
as the peak frequency or duration of the signal), however, automated signal analysis and
classiőcation was not used. Steps of the signal processing pipeline started to be automated
in the 1990’s, with signal preprocessing, such as noise removal in a work by Liu et al. [29],
classiőcation in a study by Zhang et al. [30] or feature extraction in a study by Tavathia et
al. [31]. Those automated steps remain the focus of the literature to date.

In the literature, methods using sounds or vibrations generated by the joints can be found
under a variety of names, such as joint auscultation (especially in the early years of VAG de-
velopment) [23], phono arthrography [32], vibroarthrography [33], vibration arthrometry [25]
or joint acoustic emissions [34]. Those naming conventions mirror historical trends, with a
gradual change of microphones to accelerometers as main acquisition devices. For more in-
depth analysis of VAG domain with great insights on historical developments, see critical
review by Abbott and Cole [25].
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3.2.1 Knee joint conditions studied in the literature

Vibroarthrography in the healthy knees joints

Some references use VAG for healthy subjects only, studying dependencies of the vibroarthro-
gram on some external factors. For example, Bączkowicz et al. [35] investigated the impact
of knee immobilization and subsequent re-mobilization on the quality of arthrokinematics
within the patellofemoral joint. They found signiőcant differences in VAG power features
between immobilized patients and controls. Furthermore, a strong correlation was observed
between these features and the duration of immobilization. Although a 2-week rehabilita-
tion program yielded some improvement, it did not fully restore the VAG power features to
the level of controls, underlining the profound and lasting effects of immobilization on joint
function.

In some other publications, the effects of muscle contraction and additional load on the
VAG signals were described. Zhang et al. [36] found that muscle contractions result in an
increased VAG signal power. Andersen et al. [37] and Kalo et al. [38] studied external load
in open kinetic chain, while Bolus et al. [39] and Ołowiana et al. [40] analyzed it in a closed
kinetic chain. These őndings collectively suggest a consistent increase in VAG signal power
with external load and muscle activity, regardless of the kinetic chain context.

The impact of age on the VAG signal features has also been a focus of investigation, with
studies dividing participants into junior and senior groups [41], or further into 5 age groups
spanning the 3rd to 7th decade of life [42, 43]. The őndings consistently indicate a positive
correlation between age and the power of the VAG signal, and a negative correlation between
age and signal complexity. Speciőc features measuring power and complexity will be later
described in more detail.

Vibroarthrography as a screening tool

Vibroarthrography was often used as a screening tool to classify knee joints into normal or
abnormal classes, without specifying the exact type of abnormality or condition. An example
of this approach is the dataset created by Professor Rangayyan’s team at the University
of Calgary [44]. This dataset comprises VAG signals from both healthy and unhealthy
knee joints, with the latter group containing various conditions such as different grades
of chondromalacia patellae, anterior cruciate ligament injuries, meniscal tear, and tibial
chondromalacia. This dataset has made a signiőcant impact on the VAG őeld, being used
in a number of publications [44–71].

In another study, Hersek et al. [72] also used a binary classiőcation system, distinguishing
between healthy and unhealthy (injured) knee joints using VAG signals. They focused on
knees affected by acute injuries, which included anterior cruciate ligament tears, lateral
meniscus tears, and medial collateral ligament sprains. Taking a similar approach, Ozmen
et al. [73] utilized another dataset, classifying VAG signals into healthy and injured groups,
with the injured group containing knee joints with a nine different conditions.

Similarly, Zheng et al. [74] conducted a study distinguishing healthy and injured classes,
where the injured class included patients with meniscus injury or four various stages of
osteoarthritis. Further, Befrui et al. [75] also employed a binary classiőcation approach,
distinguishing between healthy knee joints and non-healthy ones. The non-healthy class
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included knee joints affected by osteoarthritis and three stages of chondromalacia patellae
(second, third, and fourth stage).

Vibroarthrography in Osteoarthritis

This binary classiőcation approach, which doesn’t specify a particular disease, implies that
various knee diseases might share similar characteristic features, or lack of those, in their
VAG signals. These shared features may allow for differentiation from healthy knee signals.
Typically, these distinguishing features involve measurements related to the power or spectral
parameters of the signal, which will be described in more detail later. Majority of studies,
however, use more homogeneous abnormal groups, with the osteoarthritis being one of the
most popular.

The severity of oa can be categorized into four grades according to the Kellgren-Lawrence
grading system [21]. While many studies examine either a single OA grade or combine several
without making distinctions, a study by Tanaka and Hoshiyama diverge from this trend [76].
They considered three groups: healthy knees, knees with oa grades I and II, and knees with
oa grades III and IV. They identiőed statistical differences in low-frequency VAG power
features, observing an increase in power corresponding with the progression of oa severity.
In a subsequent study [77], they classiőed participants into three groups: an oa class including
Kellgren-Lawrence grades 1 to 3, a healthy senior group age-matched to the oa class, and
a healthy junior group. They found that the VAG signals of the healthy junior group were
less variable compared to the healthy senior group, with the OA group exhibiting the most
variable signals. Statistically signiőcant differences were found between the OA group and
both healthy groups.

However, within the context of osteoarthritis, the primary application of VAG has typi-
cally been to differentiate oa knees from healthy ones [14,15,78–88]. In many instances, this
involves categorizing oa by a speciőc grade or, more frequently, combining several grades
to create a uniőed group without speciőc grade distinction. Publications implementing this
type of approach usually differ from each other mostly in implemented signal processing
algorithms. However, general consensus is reached that oa knees, in comparison to healthy
ones, have more power in lower frequency bands, making spectral features highly informa-
tive [89]. Another common observation is that the oa knee joints generally produce more
acoustic emissions (according to Mascaro et al. [80], even up to 10 times more) than healthy
knee joints, which is indicated in the VAG signal by singular amplitude bursts or spikes.

Therapy monitoring in Osteoarthritis

In a couple of studies, VAG method was used as a tool to assess the effects of viscosupple-
mentation in patients with knee osteoarthritis. For instance, Falkowski et al. [90] employed
VAG to investigate changes in the arthrokinematics of a knee joint after a single injection of
hyaluronate in patients with moderate knee osteoarthritis. The őndings revealed a signiő-
cant reduction in VAG power features, suggesting an improvement in arthrokinematics. The
study concluded that viscosupplementation could potentially reduce joint motion-related vi-
brations, improving the qualitative aspects of arthrokinematics in patients with moderate
knee osteoarthritis. Similarly, Bączkowicz et al. [91] utilized VAG to evaluate the inŕuence
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of viscosupplementation on knee arthrokinematics in patients with grade II oa. The patients
were analyzed at three different time points: before the injection, two weeks post-injection,
and four weeks post-injection. The study showed an initial decrease in the VAG power two
weeks after the injection, indicating an improvement in arthrokinematics. However, at four
weeks post-injection, VAG power increased again, reaching levels similar to those before the
injection. These őndings suggest that while viscosupplementation can lead to short-term
improvements in joint motion, the effects may be temporary.

In another study, Kalo et al. [92] investigated the immediate effects of a neuromuscular
exercise intervention on knee joint sounds in individuals with osteoarthritis. The study
involved a neuromuscular exercise intervention, designed to enhance sensorimotor control of
the trunk and lower limbs, as well as improve the quality of movement. In addition, a placebo
treatment, using laser needle acupuncture, was also administered. Vibroarthrography was
used to measure knee joint acoustic emissions before and after both interventions, during
various daily activities. The results indicated that the exercise intervention indeed had
an impact on knee joint sounds. This study, along with the viscosupplementation studies
previously discussed, illustrate the potential of VAG as a robust and descriptive tool, showing
its capability to effectively evaluate the quality of knee joint function.

Distinguishing Osteoarthritis and Chondromalacia

Certain studies have gone beyond distinguishing oa from healthy knee joints, exploring
the capability of differentiating oa from other diseases using VAG signals. For instance,
Bączkowicz and Majorczyk [93] conducted a comparative analysis of VAG signals from oa,
chondromalacia, lateral patellar compression syndrome, and healthy subjects. They őrst
extracted features from the VAG signals, speciőcally focusing on measures of variability and
spectral power across two frequency bands. Their analysis revealed that all groups with
patellofemoral joint disorders exhibited higher levels of both variability and spectral power,
compared to the healthy controls. More interestingly, the study identiőed differences in all
examined features between osteoarthritis and chondromalacia. Moreover, certain features
were also able to differentiate lateral patellar compression syndrome from osteoarthritis, and
lateral patellar compression syndrome from chondromalacia.

In the study conducted by Kręcisz and Bączkowicz [5], őve distinct classes were identiőed:
oa, three stages of chondromalacia (őrst, second and third), and healthy knees. This dataset,
used for the őrst time in their research, was also utilized in this dissertation. The authors
employed a plethora of signal features to quantify power, various frequency components, and
the complexity of the signal. When classifying signals, they achieved an accuracy of 69%
for the 5-class classiőcation. For binary classiőcation, where all non-healthy signals were
combined into one group, the accuracy increased to 90%. These őndings suggest that VAG
signals may serve as a valuable tool, not only for distinguishing healthy knee joints from
those with speciőc disorders, but for differentiating between various knee disorders as well.

Vibroarthrography in Chondromalacia

Wu et al. [94] leveraged vibroarthrographic (VAG) signals to distinguish between healthy
knees and knees with chondromalacia patellae, with the latter group containing various
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stages of the condition. The results indicated that vibroarthrograms of knees with chondro-
malacia were characterized by a higher degree of variability than those from healthy knees,
as indicated by a greater number of signal turns.

In a comparative analysis of open and closed kinetic chains, Bączkowicz et al. [95] un-
dertook binary differentiation of healthy and chondromalacia-affected knees. The chondro-
malacia group included stages 2 and 3. Results showed that patients with chondromalacia
exhibited heightened vibroacoustic emission levels in both open and closed kinetic chains.
That is, their VAG signals were more variable and demonstrated higher power within speciőc
frequency bands.

Similar approach was implemented by Jonak et al. [96], who also sought to distinguish
between healthy knees and those affected by chondromalacia. Also employing both open and
closed kinetic chains, they utilized Recurrence Quantiőcation Analysis to measure signal
complexity. Results indicated that signals obtained from chondromalacia-affected knees
exhibited greater Recurrence Rate, Entropy, and Trapping Time features, in both open and
closed kinetic chains. This suggests a higher complexity and variability in chondromalacia
signals compared to those from healthy knees.

Using a different approach, Bączkowicz and Majorczyk [97] differentiated among the three
consecutive stages of chondromalacia, rather than treating them as a uniőed group. Each
stage was found to generate unique vibroacoustic signals, with a clear relationship observed
between signal variability, power in speciőc frequency bands, and the degree of cartilage
damage (i.e., the chondromalacia stage). Similar approach was achievement in the previously
mentioned research by Kręcisz and Bączkowicz [5], where three stages of chondromalacia
were also distinguished. Both works show the potential for vibroarthrographic analysis to
differentiate among the stages of chondromalacia patellae.

Vibroarthrography in Juvenile Idiopathic Arthritis and other diseases

Several publications have utilized vibroarthrography to distinguish healthy knee joints from
joints affected by juvenile idiopathic arthritis. In a pilot study by Semiz et al. [98], signals
from 8 subjects were used. In following studies by Whittingslow et al. [99] and Gharehbaghi
et al. [100], the number of study participants was increased. All mentioned studies classi-
őed knee joints as either healthy or affected by juvenile idiopathic arthritis. Their signal
processing approach was different from previously referenced works, with additional signal
segmentation step before the feature extraction. It will be discussed in more detail later.
For now, the most signiőcant conclusion which can be derived from those studies is that
the signals obtained from the knee joints affected by the juvenile idiopathic arthritis can be
effectively distinguished from the healthy-generated ones.

Vibroarthrography has also been employed for distinguishing between various other health
conditions. Reddy et al. [101] used it to distinguish between two forms of arthritis: spondy-
loarthropathy and rheumatoid arthritis. Their research demonstrated that the mean power
of acceleration signals within a speciőc frequency range varied signiőcantly between the two
patient groups. In a later research, Faria et al. [102] conducted a study focusing on the
distinction between normal and rheumatoid arthritis-affected knee joints. They found a sta-
tistically signiőcant difference in knee joint vibration power within a lower frequency range.
In a different study, Richardson et al. [103] applied vibroarthrography to separate healthy
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knees from those afflicted with a meniscus tear. They extracted a set of features, which allow
them to distinguish healthy knee joints from knees with meniscus tear.

Table 3.1: Summary of knee joint conditions studied in the literature.

references studied conditions groups details
[44,47–75,104–114] healthy, non-healthy 2 various conditions
[14,15,78–88] healthy, oa 2 various oa grades combined
[76] healthy, oa 3 oa grades I and II, and oa grades III and IV
[77] healthy, oa 3 oa grades I to III, healthy senior, and junior
[90,91] healthy, oa 3 oa before and after viscosupplementation

[92] oa 4
before and after neuromuscular exercise
interventions and placebo

[93] healthy, oa, CMP, LPCS∗ 4 CMP combined stages II and III
[5, 115,116] healthy, oa, CMP 5 CMP separate stages I, II and III
[94–96] healthy, CMP 2 various CMP stages combined
[97] healthy, CMP 4 CMP separate stages I, II and III
[98–100] healthy, JIA† 2
[101] SPA‡ and RA§ 2
[102] healthy, RA§ 2
[103] healthy, MT¶ 2

[35] healthy 3
controls, immobilized before rehabilitation,
and immobilized after rehabilitation

[36] healthy 3 min., medium and max. contraction levels
[37] healthy 4 0, 1.25 kg, 2.5 kg and 5 kg additional load
[117] healthy 3 0 kg, 10% and 40% of one repetition max
[39] healthy 3 0, 50%, 100% body weight
[40] healthy 3 0 kg, 10 kg, 20 kg
[41] healthy 2 healhty junior, healthy senior
[42,43] healthy 5 3rd to 7th decade of life

∗LPCS: Lateral Patellar Compression Syndrome †JIA: Juvenile Idiopathic Arthritis ‡SPA: Spondy-
loarthropathy §RA: Rheumatoid Arthritis ¶MT: Meniscus Tear

In the Table 3.1, various conditions of the knee joint, with the corresponding references,
were summarized.

3.3 Signal acquisition

In this section, details of signal acquisition will be discussed, broadly divided into sensor types
and their frequency ranges, placement of the sensor on the studied joint and experimental
procedures used during the recording of the vibroarthrogram.

3.3.1 Sensor types and frequency ranges

As mentioned earlier, early developments in VAG signal analysis were focused on using
microphones, which were later changed for accelerometers. Usage of microphones is still to
be found in recent works [92], for the advantage of sensor not requiring direct contact with
the skin.



20 CHAPTER 3. REVIEW OF THE VIBROARTHROGRAPHY PROCESSING CHAIN

Speciőc accelerometer sensors currently used to measure vibroarthrographic signals are
of frequency band up to 10 kHz. Microphones of different types on the other hand, have
considerably wider frequency range, even up to 200 kHz. Summary of various sensors used
in literature, with speciőc works which used those sensors, was included in table 3.2.

Table 3.2: Summary of sensors used to acquire vibroarthrographic signals.

references sensor type brand model frequency range
[36,44,45,47–71,94,
105–111,118,119]

ACC∗ Dytran 3315A 5 Hz–10 kHz

[39,73,98–100,
103,120–122]

ACC∗ Dytran 3225F7 2 Hz–10 kHz

[5, 35,40,42,43,90,
91,93,95,97,115,
116,123]

ACC∗ Brüel&Kjñr 4513B-002 1 Hz–10 kHz

[34,38,92,124] ACC∗ Knowles
SPU0414HR5H-
SB

100 Hz–10 kHz

[125] ACC∗ Analog Devices ADXL325 0 Hz–550 Hz
[102] ACC∗ Analog Devices ADXL335 0 Hz–550 Hz
[75] ACC∗ PCB Piezotronics 352A24 1 Hz–8 kHz
[112] ACC∗ PCB Piezotronics 353-B33 1 Hz–4 kHz
[104,126] ACC∗ Vibro-Meter Corp BBN501M601 not speciőed
[101] ACC∗ Entran Devices EGA 0 Hz–500 Hz
[76,77] ACC∗ Kistler 8690B5 not speciőed
[37,84] ACC∗ STMicroelectronics LIS344ALH 0 Hz–1.8 kHz

[114] ACC∗ PLUX Wireless
Biosignals

xyzPlux 0 Hz–500 Hz

[83] ACC∗ InvenSense MPU6050 not speciőed

[75] PE† disk
Elektrotechnik
Karl-Heinz Mauz
GmbH

EPZ-27MS44F 4.4 kHz‡

[14, 15,86–88,96]
PE† contact
microphone

TE Connectivity CM01b 8 Hz–2.2 kHz

[72,113,127]
electret
microphone

Sanken
Microphone

COS-11D 50 Hz–20 kHz

[78,79]
electro-
stethoscope
(PE† microphone)

MediTech SP-S1 5 Hz–2 kHz

[82] microphone not speciőed not speciőed 50 Hz–16 kHz

[113,127]
PE† contact
microphone

Measurement
Specialties

SDT 100 Hz–10 kHz

[113,127]
MEMS based
microphone

STMicroelectronics MP33AB01H 100 Hz–10 kHz

[80] PE† sensor Physical Acoustics S9204 50 Hz–200 kHz
[41] PE† sensor Murata 7BB-20-6L0 6.3 kHz‡

∗ACC: Accelerometer †PE: Piezoelectric ‡Frequency band information not available, resonant frequency
provided instead.

The frequency bands of the sensors used indicate speciőc ranges within the total spectrum
of measured frequencies, where the sensors have a ŕat frequency response. In these bands,
from the lower to the upper frequency limits, the sensors maintain a consistent output level.
However, another major factor determining acquired signal is the sampling frequency, i.e.,
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the frequency in which the data is acquired. It determines the time resolution of a signal and
is especially important in relation to the Nyquist frequency. The Nyquist frequency is half
of the sampling frequency. According to the Nyquist-Shannon theorem [10], to accurately
capture a signal without aliasing, the sampling frequency must be at least twice the highest
frequency component of the input signal. In other words, frequencies up to half of the
sampling frequency will be correctly captured in the sampled (discrete) signal.

In the VAG signal acquisition, most studies use sampling frequencies up to 10 kHz,
with a few exceptions where much higher frequency is used (even up to 1 MHz). However,
most studies also use some band-pass őltering or other preprocessing algorithms to őlter out
uninformative signal components. More in-depth preprocessing review will be provided in
the following section. Summary of the acquisition frequencies was provided in Table 3.3.

Table 3.3: Summary of sampling frequencies used to acquire vibroarthrographic signals.

references sampling frequency [kHz]
[37,96,114,125] 1
[14,15,86–88] 1.4
[83] 1.48
[41,44,45,47–71,74,84,94,106–111,118,119] 2
[76,77,101,102] 3
[36] 4
[112] 5
[38] 5.512
[78,79] 6
[5, 35,40,42,43,90,91,93,95,97,115,116,123] 10
[85] 10.24
[105] 15
[34,75,92,124] 16
[121] 25
[113] 40
[72,81,127] 44.1
[39,82,122,127] 50
[73,99,100,103] 100
[120] 102.4
[98] 108
[80] 1000

3.3.2 Sensor placement on the knee joint

Vibrations generated by the knee joint can be easily damped by soft tissues, such as muscles
or fat [121] and distorted by muscle activity [25]. Therefore, sensor placement on the knee
is crucial. Various locations used in literature to acquire vibroarthrograms were visualized
in Figure 3.2. In the rest of this subsection, numbers referenced in the text correspond to
dots in this őgure.

Generally, various locations were used in the literature, sometimes depending on speciőc
condition of the knee to be diagnosed, or type of the sensor. However, the most common
localization for VAG signal acquisition is central part of the patella (dot 1). It was used in
the context of healthy knee joints to analyze the impact of muscle interference [36, 119] or
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Figure 3.2: Sensors placement used across the VAG literature.

external load [38,40] on the vibroarthrogram, to compare movement patterns [125], measure
the relation of age and the quality of joint’s motion [42, 43] or determine repeatability of
the VAG signal in general [34, 124]. Nevertheless, differencing between normal and some-
how abnormal knee joints is the usual goal of VAG signal analysis. Mid-patella location
(dot 1) was used for knee joint screening [71] and more speciőc classiőcation, with condi-
tions such as chondromalacia [94], osteoarthritis [82], rheumatoid arthritis [102] or meniscal
pathologies [128].

In some studies, meniscal pathologies were classiőed using VAG signals obtained from
femoral condyles. For example, Bączkowicz and Kręcisz [123] used medial condyle of the
femur (dot 2). Both medial (dot 2) and lateral (dot 3) condyles were earlier used by Kernohan
et al. [28, 128].

Medial and lateral condyles of the tibia (dots 4 and 5, respectively), are also quite common
sensor locations in literature. The medial tibial condyle (dot 4) was used by Kim et al. [78,79]
for osteoarthritis detection. In the same context, similar sensor placement was used by
Mascaro et al. [80], aided by the sensor placed at the upper part of tibia (dot 8). In some
of the works by Kalo et al. [34,38,92,124], medial tibial condyle (dot 4) was used along the
mid-patella (dot 1) location, in both osteoarthritis and asymptomatic only studies. Lateral
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tibial condyle (dot 5) was used for knee joint screening [112]. Tanaka and Hoshiyama [76]
used the same location to differentiate between different stages of osteoarthritis, and later,
in the combined contexts of osteoarthritis and age [77]. Finally, Befrui et al. [75] used both
condyles of the tibia, as well as mid-patella location (dot 1) to differentiate between healthy
and non-healthy knee joints.

Another popular location is the tibial tuberosity below the patella (dot 7). It was mostly
used in the healthy knee joints context [36, 37, 119], however, Madeleine et al. used it for
osteoarthritis detection [84].

Some studies utilized two accelerometers, placed medially and laterally to the patellar
tendon (dot 24 and 25, respectively). This conőguration was used by Ozmen et al. [73] for
screening purposes. In the studies by Whittingslow et al. [99] and Gharehbaghi et al. [100],
the same location approach was applied for juvenile idiopathic arthritis detection. Richard-
son et al. [103] used it for meniscus tear classiőcation, while in the study by Bolus et al. [39],
it was used in the healthy-only external load context.

In most works regarding VAG signal analysis, vibroarthrograms were acquired by one
sensor. However, as mentioned earlier, some studies used multiple sensors, with a goal
to remove interferences [118], illustrate spacial distribution of some signal features [37],
localize the pathology within the joint [105], or determine the best localization of the sensor.
For example, Befrui et al. [75] used three locations: mid-patella, medial and lateral tibial
condyles (dots 1, 4 and 5, respectively). According to their results, the patellar location
(dot 1) provided the most informative signal (in terms of speciőc frequency components),
followed by medial (dot 4) and lateral (dot 5) tibial condyles. In the reliability study of the
vibroarthrograms, Kalo et al. [124] similarly compared mid-patella position (dot 1) to the
medial tibial plateau (dot 4). Their study indicated slightly better repeatability of the VAG
signals acquired from the latter location, but only in the intrasession context, i.e., with the
vibroarthrograms acquired the same day. For the interday repeatability, some features of the
VAG signals recorded from the patellar location (dot 1) proved to be repeatable, which was
not the case for the medial tibial plateau (dot 4). The same locations were also compared in
the other study by Kalo et al. [34]. Their results indicated that in the context of two speciőc
VAG features, patellar location (dot 1) proved to be more sensitive to both between-subject
differences and movement conditions.

Based on those studies, the patella (dot 1) seem be the best sensor location for VAG
acquisition. However, comparison of the VAG acquisition locations, in terms of either infor-
mativeness or repeatability, can only be done using some speciőc VAG features. Therefore,
different features could potentially yield different results of the comparison.

There are also other sensor placement locations used in the VAG literature less com-
monly. Their summary was provided in Table 3.4. Location numbers provided in this table
correspond to dots in Figure 3.2.

3.3.3 Experimental procedures and kinetic chain conőgurations

Movement patterns can be broadly categorized into Open Kinetic Chain (OKC) and Closed
Kinetic Chain (CKC). In the OKC, movement of the end of the leg is unrestricted, like for
example during a seated leg extension. On the other hand, CKC includes movements, where
the end of the limb is őxed or in contact with a stationary object. An example of a CKC
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Table 3.4: Summary of the sensor localizations used in the literature. Note, that localization
column corresponds to numbering in Figure 3.2.

references localization description
[5,28,34–36,38,40,42–45,47–71,
75,82,83,85,87,91–95,97,102,
104–111,114–116,118,119,123–
126,128]

1 mid patella

[28,105,123,128] 2 medial femoral condyle
[28,105] 3 lateral femoral condyle
[34,38,75,78–80,92,124] 4 medial tibial condyle (plateau)
[75–77,112] 5 lateral tibial condyle
[15] 6 lower pole of the patella
[36,37,84,105,119] 7 tibial tuberosity below the patella
[80] 8 upper medial part of tibia
[36,45,47,118,119] 9 rectus femoris muscle
[37,84] 10-13 square conőguraion on the patella

[37,84] 14
medial side of the knee 1-2 cm from the medial
condyle of femur towards the patella

[37,84] 15
lateral side of the knee 1-2 cm from the lateral
condyle of femur towards the patella

[37,84] 16 above the knee over the quadriceps tendon
[120,127] 17 lateral side of the patella
[72,120,127] 18 medial side of the patella
[14,86,88] 19 lateral joint őssure
[14,86,88] 20 medial joint őssure
[114] 21 proximal part of the patella
[82] 22 medial epicondyle
[82] 23 lateral epicondyle
[39,73,98–100,103,121] 24 medial to the patellar tendon
[39,73,99,100,103,121] 25 lateral to the patellar tendon

[81] 26
lateral aspect of the knee with the axis of rotation at
the joint line

[36,41,82,119] - mid tibia

movement could be a squat exercise. In the vibroarthrography őled, both OKC and CKC
are widely used, each utilized through a variety of experimental procedures. Summary of
movement patterns and experimental procedures used in the vibroarthrography was provided
in Table 3.5.

The OKC movements usually incorporate extending and ŕexing the free-hanging leg in
a seated position, with range of motion ranging usually from 90 to 135 degrees. In most
experimental protocols, the leg moves without any additional load. Some studies, however,
implement such loadings. For example, Ladly et al. [118] repeated VAG acquisition for un-
loaded knee, as well as three- and six-pound weights attached to the ankle joint. Similarly,
Andersen et al. [37] used four loading settings, i.e., 0 kg (no additional load), 1.25 kg, 2.5 kg
and 5 kg weights, attached to the arch of the foot. Slightly different approach was used by
Kalo et al. [38], which incorporated leg extension device. Loading settings in this study were
normalized by the strength of the participant, and were equal to 0% (no additional load),
10% and 40% of the load the participant was able to lift once (i.e., the one repetition max).
Results of those studies consistently point out, that energy of the vibrations is increased
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Table 3.5: Summary of the movement patterns used in the literature to measure vibroarthro-
graphic signals.

references chain additional load details
[5, 14,15,35,37,38,42,43,72,73,

75,78,79,81,90,91,93,95–102,
104,105,114–116,120,122,123,
125,128]

OKC none ROM∗ 90°

[44, 45,47–71,74,94,105–111] OKC none ROM∗ 135°

[14, 15,34,36,38,41,76,77,80,
82–88,92,95,96,100,104,112,
113,119–121,124,125,127]

CKC none ROM∗90°

[40] CKC 0, 10, 20 kg ROM∗ 90°, squat exercise
[118] OKC 0, 3, 6 pound ROM∗ 90°

[39] CKC 0%, 50%, 100% BW† vertical leg press
[121] CKC -10.8%, 0, 19.3% BW† walking
[37] OKC 0, 1.25, 2.5, 5 kg ROM∗ 90°

[38] OKC 0%, 10%, 40% of 1RM‡ ROM∗ 90°

∗ROM: Range Of Motion †BW: Body Weight ‡1RM: One-Repetition Maximum

with additional load.

Movement in CKC-based protocols is more diverse. Similarly to OKC, additional loading
is usually not implemented, with few exceptions. For example, Ołowiana et al. [40] imple-
mented squats in their study, with the additional weight being 0 kg (no additional load),
10 kg, and 20 kg. Bolus et al. [39] applied additional load using vertical leg press, with
three load settings: 0% (no additional load), 50%, and 100% of participant’s body weight.
In the study by Scherpereel et al. [121], experimental procedure consisted of walking on 10-
degree inclined or declined treadmill, with body-weight harness, no additional loading and an
additional weighted vest. Harness removed on average 10.8% of participants body weight,
while vest added on average 19.3%. Similarly to OKC, additional weight in CKC results
in greater power of the vibroarthrogram. Nevertheless, most studies acquire VAG signals
without additional load. The unloaded movement usually includes standing from a seated
position with 90-degree ŕexion in the knee joint, walking [34, 92, 121], going upstairs [84] or
downstairs [34,38,84,92], squatting [40,85,112,120], or forward lunging [34].

Some studies compared informativeness of vibroarthrogram for movements in OKC and
CKC. Results of Machrowska et al. [125] indicated that both movement chains are impor-
tant. According to their results, OKC analysis, because of reduced high-frequency muscle
interference, offers better insights into the unloaded limb function, particularly cartilage
structures. Closed chain analysis, on the other hand, provides data on the function of a
loaded limb under real conditions. Bączkowicz et al. [95] compared CKC and OKC in the
context of chondromalacia diagnosis. The results indicated that VAG signals from both
CKC and OKC can provide features, which show statistically signiőcant differences between
healthy and chondromalacia knee joints. Moreover, both power and variability of the VAG
signals proved to be greater in CKC conditions, which can be linked to differing stress and
friction in the patellofemoral joint. Since informativeness of the signals is similar for both
movement patterns, OKC can be preferred option for VAG acquisition in patients.
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3.4 Signal preprocessing

Various methods of preprocessing are present in the VAG literature. For the purpose of this
review, they will be divided into őltering, reference denoising, decomposition, normalization,
segmentation and windowing. Note, that speciőc references might used various preprocessing
methods selectively or in combination. Also, some references did not use any preprocessing,
i.e., analyzed raw VAG signal. The summary of various preprocessing strategies with their
corresponding references was provided in Table 3.6. More detailed description of speciőc
methods will be provided in following subsections.

Table 3.6: Summary of the preprocessing methods used in vibroarthrography literature.

references method details
[87, 115,116] raw
[5,34–40,42–45,47,

49–59,61,63–67,71–74,
76–79,82,84,90–95,
97–103,105–108,110,
113,121–124,127]

frequency-selective őltering details in Table 3.7

[85] non-frequency-selective őltering moving median
[62,64] non-frequency-selective őltering Savitzky-Golay
[59,62,64,67,70,71,

74,109,111,114]
non-frequency-selective őltering cascade moving average

[116] non-frequency-selective őltering differencing
[41,45,114,118,119] reference denoising
[86,94,112] decomposition empirical mode decomposition
[14,15,62,63,66,74,

88,96,110,114,125]
decomposition ensemble empirical mode decomposition

[64] decomposition variational mode decomposition
[49,55,57,85,106] decomposition wavelet decomposition
[50,67,70] decomposition wavelet packet decomposition
[52,53,55–58,61,68] normalization 0 to 1
[94] normalization −1 to 1
[72] normalization zero mean, unity variance
[68] normalization 3-bit encoding
[39,41,44,45,47,51–

55,57,58,75,78–81,99–
103,118,121,122,124]

segmentation speciőc movement patterns

[14,15,88] segmentation removal of insigniőcant signal fragments
[5, 35,37,40,42,49,53,

54,57,58,60,71,73,78,
79,84,86,90,91,93,95,
97,99,100,103,107–
109,114,121,123]

windowing various time frames

3.4.1 Filters

Filter methods can be further divided into frequency-selective and non-frequency-selective
ones. The former types, with an example of the Butterworth őlter, are designed to pass
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speciőc frequency band. In this band, their frequency response is relatively ŕat, while fre-
quencies outside of it get attenuated. Those types of őlters are used with an assumption,
that the important information of the signal is inside their frequency range and removing
other frequencies improves signal’s informativeness. Summary of frequency bands used in
literature, with corresponding references, was provided in Table 3.7. For better comparison
of different frequency ranges, they were also visualized in Figure 3.3.

Table 3.7: Summary of the frequency-selective őlter pass-band frequencies used in VAG
preprocessing. Note, that while most references used band-pass őltering, low-pass or high-
pass őltering were also present. Values in the number column correspond to visualization
provided in Figure 3.3.

references low freq. high freq. number
[113] LP† 10000 1
[102] 2 HP∗ 2
[37] 10 250 3
[84] 10 500 4
[39] 10 800 5
[36,44,45,47,49–59,61,63–67,71,74,94,106–108,110] 10 1000 6
[76] 25 350 7
[77] 25 500 8
[101] 25 HP∗ 9
[5, 34,35,40,42,43,91–93,95,97,123] 50 1000 10
[73] 50 5000 11
[90] 50 HP∗ 12
[38,124] 100 300 13
[121] 100 1000 14
[82] 100 2000 15
[122] 150 20000 16
[78,79] 220 2000 17
[103] 250 8000 18
[99,100] 250 10000 19
[98] 250 20000 20
[105] 300 800 21
[72] 1000 15000 22
[127] 7000 16000 23

∗HP: High-pass őltration †LP: Low-pass őltration

As can be seen in Figure 3.3, there seem to be no hard consensus on the őltering frequency
ranges in the VAG literature. The discrepancies are mostly caused by different measurement
setups, i.e., types of the sensor, its placement on the knee joint and experimental procedure.
Some authors used as narrow bands as 200 Hz [38,124], while other considered wider ranges.
Also, in some studies, only relatively high frequencies, i.e., above 1 kHz, were considered [72,
127]. Nevertheless, most of the studies used frequency bands between 10 Hz and 1 kHz.

In an earlier study conducted by the author of this dissertation, along with other re-
searchers [116], Frequency Range Maps were developed and implemented to identify the
most informative frequency ranges in a classiőcation context. More detailed description of
this methodology will be provided in the Chapter 6.

Another type of őltering approach do not assume speciőc frequency bands. That is,



28 CHAPTER 3. REVIEW OF THE VIBROARTHROGRAPHY PROCESSING CHAIN

Figure 3.3: Filtering bands used in the literature. Upper plot shows speciőc frequency
ranges used in various studies. Numbers above lines correspond to numbers in Table 3.7.
Lines ended with arrows indicate low- or high-pass őltering. Lower plot shows count of
references that used speciőc frequency range.

non-frequency-selective őlters do not have ŕat frequency response. Their implementation
usually consist of dividing signal into small windows of őxed duration, then calculating
some feature(s) of those windows. Signals obtained from such windowing are usually called
moving or rolling. For example, Wang et al. [85] used moving median őltration to remove
high-amplitude pulses from the vibroarthrogram. Another example could be Savitzky-Golay
őlter, which consists of őtting low-degree polynomial to the datapoints in a given window.
This method was also implemented in the VAG preprocessing context, in the studies of
Sundar et al. [62,64]. In both studies, it was used at the őnal step of multi-step preprocessing.

One of the most popular preprocessing approaches based on non-frequency-selective ől-
tering uses cascade moving average to remove baseline wander. It was proposed by Cai et
al. [59] and can be described as having two layers. The őrst one consists of two overlapping
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moving average operators. From their results, i.e., two smoothed signals, a linear piecewise
trend is obtained, which is further smoothed in the second layer. The resulting signal can
be considered the baseline wander estimation. Baseline-wander-free vibroarthrogram can be
obtained by simply removing the estimation from the raw signal.

There are also high-pass non-frequency-selective őlters, which can be used to attenuate
lower frequencies, while preserving or emphasizing high-frequency components. An example
of this őlter type would be a differencing operation, i.e., subtracting adjacent signal samples.
This method was applied to VAG signals in previous study [116], and and will also be used
in this dissertation. Therefore, more detailed description of this method will be provided in
Chapter 4.

3.4.2 Reference denoising

In some studies, the vibroarthrogram was denoised using some reference signal. For example,
acquiring additional vibroarthrogram via the sensor placed on the rectus femoris muscle,
Zhang and Rangayyan [119] used Widrow-Hoff LMS algorithm to remove its interference in
the VAG signal. Wu et al. [114] obtained trend reference from the proximal-patella sensor
location to remove motion artifacts from the mid-patella VAG signal. Both sensors used
were accelerometer-based. Another usage of additional sensor to improve the quality of the
vibroarthrogram was implemented by Gong et al. [41]. They used angle signal to calculate
the frequency of drifting baseline, which was further used to remove the baseline wander.

3.4.3 Decomposition methods

Decomposition methods consist of breaking down signal into less complex sub-signals, which
can be considered components of the original signal. That is, summing up sub-signals results
in the original signal. Speciőc sub-signals can contain most information important in a given
context. Therefore, the usual preprocessing based on decomposition, consists of őrstly de-
composing the signal, then determining which sub-signals are informative, optionally further
őltering them, and őnally summing up selected sub-signals. In some studies, however, each
sub-signal was further used for feature extraction.

One of the most popular decomposition methods is the Empirical Mode Decomposition
(EMD) [129]. It consist of a series of steps to obtain individual Intrinsic Mode Functions. The
őrst step involves identifying local extremes of the signal. Then, upper and lower envelops
are constructed by interpolating between local maxima and minima, respectively. In the
next step, the average value of the envelopes is subtracted from the original signal, providing
a candidate Intrinsic Mode Function (IMF). The IMF is a oscillatory component signal, that
satisfy two conditions: its number of extremes and zero-crossings can differ by at most one,
and local average value of envelopes is zero. If those conditions are not met for the obtained
candidate IMF, the process is repeated on the resultant signal, as long, as the conditions
are not fulőlled. After meeting the conditions, the őrst IMF is subtracted from the original
signal, and the process is repeated on the remaining part of the original signal. Resulting
IMFs are oscillatory signals with frequency bands successively decreasing with the level of
the decomposition.
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As mentioned earlier, the signal preprocessing using EMD usually consists of summing
up speciőc informative IMFs. For example, Karpiński et al. [86] summed up the IMFs
with normally distributed values. Opposite approach was used by Wu et al. [94]. They
reconstructed the VAG signal using only IMFs with values distribution signiőcantly different
from Gaussian. Additionally, they removed baseline wander from the low-frequency IMFs.
Instead of selecting IMFs based on some statistical criterion, Chen et al. [112] argued, that
the highest frequency IMF captures noise, while lower frequency IMFs correspond to muscle
contraction. Actual vibroarthrographic signals are captured by speciőc IMFs in the medium
frequency range.

One of the biggest disadvantages of the EMD algorithm is so-called mode mixing prob-
lem [130]. It involves blending of different IMFs, making them less speciőc and informative.
This phenomenon is usually attributed to non-stationarity of signals, which renders the IMFs
separation difficult. One of the methods developed to overcome this problem is the Ensemble
Empirical Mode Decomposition (EEMD) [131]. It consists of creating multiple copies of the
original signal and contaminating them with random noise. Each signal is then decomposed
into IMFs using standard EMD. Finally, the resulting IMFs of the same level are averaged
across the signals, removing the contamination and yielding more robust IMF set.

The EEMD is probably the most widely used decomposition method in the vibroarthrog-
raphy őled, with the preprocessing approaches similar to basic EMD. In most studies, how-
ever, informativeness of various IMFs is quantiőed differently. For example, Wu et al. [110]
used Detrended Fluctiation Analysis to compute Fractal Scaling Index. This approach al-
lowed them to measure anti-correlations and long-range dependencies of each IMF. After the
decomposition, the vibroarthrogram was reconstructed from IMFs that did not exhibit anti-
correlations. More detailed description of the Detrended Fluctuation Analysis and Fractal
Scaling Index will be provided in Chapter 5.

Another approach developed to overcome potential problems of the EMD is the Vari-
ational Mode Decomposition (VMD) [132]. This method is not recursive and the speciőc
sub-signals, called modes, are determined concurrently by solving an optimization problem.
It is deőned such that the total variation of the modes is minimized, while enforcing or-
thogonality between them. That leads to more stable decomposition. However, the VMD is
conducted with a regularization parameter, which needs to be tuned. It controls the tradeoff
between total variation of modes and accuracy of representing the original signal. Also, as
an optimization algorithm, it needs to be initiated with initial center-frequencies of modes.
Those features make the VMD less straight-forward to use, however, some studies in the
VAG domain have implemented it. For example, Sundar et al. [64] compared it to some
other VAG denoising strategies and őnd it superior. Their whole de-nosing algorithm con-
sisted of decomposing the signal using VMD, thresholding the modes using Wiener Entropy,
and őltering the modes of entropy greater than the threshold using low-pass 300 Hz őlter.
The őrst, high-frequency mode was őltered using band-pass őlter of 250-300 Hz. Signal
reconstructed from the őltered modes was additionally smoothed using the Savitzkty-Golay
őlter.

Another popular approach to decompose the vibroarthrogram employes Wavelet Decom-
position. It involves breaking down the signal into different frequency components at multiple
resolutions, using a predeőned set of wavelet functions. Wavelet Decomposition follows a
hierarchical structure, iteratively decomposing signal into two sub-signals. They capture
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low- and high-frequency components, and are called approximation and detail, respectively.
At each step, approximation is further decomposed into approximation and detail and the
process continues for the predeőned number of iterations. A similar approach, called Wavelet
Packet Decomposition, consists of decomposing at each iteration not only the approximation,
but also the detail into sub-signals. Both approaches were used in VAG preprocessing to
either reconstruct denoised vibroarthrogram [70], or further analyze individual sub-signals
for feature extraction [50].

3.4.4 Normalization

Normalization methods are used to change the signal amplitude, while keeping its shape,
which can minimize the impact of variation in scales or ranges between different measure-
ments or participants. This process often involves scaling signal samples from different ranges
to a pre-deőned range, typically from zero to one. Since this scaling is done on the amplitude
range of a given signal, not all signals in a database, differences in statistical parameters will
be transformed nonlineary between speciőc vibroarthrograms, potentially increasing infor-
mativeness of speciőc features. For example, Rangayyan and Wu [52] normalized signals to
the range of zero to one, before extracting features related to the probability density func-
tion of a given signal’s values. Wu et al. [94] used different values to normalize the signal’s
amplitudes, i.e., from negative to positive one. They conducted the normalization before
decomposing the signal using EMD.

Another normalizing method is the standardization of values, i.e., transforming them to
have zero mean and a unite variance. It was used by Hersek et al. [72] after initial őltering,
to őx potential discrepancies between measurement’s conditions across the knee joints.

One additional preprocessing method that directly changes signal’s values was imple-
mented by Athavale and Krishnan [68]. It consists of "encoding" the signal’s values into 3
bits, i.e., compressing them into lower dimension. This approach is qualitatively different
from the normalization approaches mentioned earlier, since it directly changes the shape of
the VAG signal. Despite reducing signal’s size by as much as 88%, classiőcation results after
such encoding proved to be better than without it.

3.4.5 Segmentation

Segmentation used in VAG signal preprocessing consist of dividing the signal into phases,
usually involving ŕexion and extension. Since forces in the analyzed knee joint are different in
both phases, vibroarthrograms generated by them have different characteristics. Analyzing
those parts of VAG signal separately can potentially provide more information about the
knee joint. The biggest disadvantage of this method is the need for additional information
about the knee joint ŕexion, or position, in time.

There are various methods to segment the vibroarthrogram into ŕexion and extension
phases. For example, Rangayyan and Wu [54] divided speciőc cycles of the signal into two
halves, corresponding to extension and ŕexion. They extracted features for the whole cycle,
as well as for ŕexion and extension phases separately. They found that, according to p-value
of the t-test, features extracted from the ŕexion segment were more descriptive than those
from extension segment or the whole cycle. However, in terms of area under the receiver
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operating characteristic curve, both the extension segment and the whole, undivided cycle
was more informative than the ŕexion segment alone.

The VAG signal can also be segmented manually, using only low-frequency components
of the VAG signal. This approach was used by Faria et al. [102] to divide the whole signal
into single standing up and sitting down movement cycles. Note, that further splitting into
ŕexion and extension was not carried out.

The most robust information about the knee joint ŕexion in time, however, can be ex-
tracted from additional sensors, like electrogoniometers [75], inertial measurement units [100]
or motion-capture systems [37]. For example, Befrui et al. [75] used a potentiometer to track
the knee joint angle along with a VAG signal. Using obtained signal, they were able to not
only segment the vibroarthrogram into ŕexion and extension phases, but also remove resting
state between those phases. Their results indicate that frequency components are generally
more informative for the ŕexion movement phase, especially in low frequency ranges.

Removal of irrelevant signal fragments to improve overall quality of the extracted features
can also be conducted without additional segmenting. For example, it was employed by
Karpiński et al. [14] in a semi-automatic way, using information provided by the encoder.

Segmentation can also be conducted to subsequently average the obtained segments. This
approach was utilized by Kalo et al. [124]. Their experiment protocol consisted of standing up
and sitting down. They also analyzed repeatability of two VAG features, namely amplitude
and median power frequency. Their results showed, that the median power frequency feature
proved to be more repeatable in sitting down motion, while the amplitude in standing up.

It seems that informativeness of speciőc motion phases depends on speciőc VAG features
being extracted, as well, as kinetic chain, or more broadly, the whole experimental protocol.
While VAG segmentation seem to allow for more reőned information extraction, there seem
to be no consensus regarding superiority of one motion phase over the other. This conclusion
is also in line with the kinetic chain comparison.

3.4.6 Windowing

Some VAG-related studies used őxed-duration signal segmentation, or windowing. In this ap-
proach, the vibroarthrogram is divided into windows of őxed duration (for example, 200 ms),
independently from the movement phase. Then, for each window, the features are extracted,
providing information about the dynamics of the feature, or, in other words, changes of some
VAG signal characteristics in time. Instead of providing one feature for the entire signal,
those methods provide feature vectors or feature signals, which can be further analyzed. This
approach is most widely used to conduct time-frequency analysis, i.e., to track the changes
of signal’s frequency distribution in time. Usually, dimensionality of the feature signals, is
reduced by calculating some summary statistics. That approach was used by Shidore et
al. [71]. They extracted a number of time-varying frequency features, which were further
summarized by average and standard deviation values.

While time-frequency analysis is the most popular use of the widowing, there are inőnitely
many features, which can be obtained following this methodology. One of the most popular
features extracted in this way is the variance of mean squares, deőned by Rangayyan and
Wu [53]. It is computed by őrstly obtaining the mean squared values in a 5-ms windows,
and then taking the variance of the obtained signal.
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In some works, a greater number of features was extracted in the windowed manner. For
example, Gharehbaghi et al. [100] extracted 72 features per window, including frequency, as
well as power and cepstrum features. Each feature signal was further reduced to three values,
namely its mean, median and standard deviation. In a work by Semiz et al. [98], authors
also obtained a set if 50 windowed features, however, did not reduce its dimensionality. The
feature matrix was provided as an input to a classiőer.

A feature signal characterize the dynamics of some speciőc feature of the vibroarthrogram.
Therefore, approach of describing this signal using some statistical features, and therefore
losing the temporal information, seem to limit its informativeness. On the other hand,
considering all of the time points of the feature signal, and treating them as separate features,
seem to dilute their characteristics and may lead to redundancy of information. Therefore,
an approach of describing each feature signal using some features, that can capture dynamics
of a signal, seem to be of potentially great value. This concept will be more broadly described
in Chapter 7.

3.5 Feature extraction

Most studies in the VAG domain focus on searching, or deőning, the most informative
features. For the sake of this review, they will be broadly divided into four categories, or
families:

1. statistical and distribution features,
2. entropy, complexity and shape features,
3. frequency features,
4. time-frequency and windowed features.

Since this dissertation is also focused in a great part on the feature extraction, various
VAG features will be only mentioned here, and described in more detail in later chapters.
Summary of the feature categories used across literature was provided in Table 3.8.

Table 3.8: Summary of the feature families used across VAG literature.

references feature family

[5, 14,15,35,37,39–42,49,51,52,56–58,60,68,71,74,76,77,
81,84,86–88,90–93,95,97,121,123,124,126,128]

statistical and distribution

[5,14,15,37,41,43–45,47,51–55,57,58,60,61,63,65,68,71–
74,84,86–88,94,96,98,100,103,109,111,114,121,122]

entropy, complexity and shape

[34,36,38,41,44,63,64,72,75–77,81,82,92,98,100–103,
116–118,121,124,128]

frequency

[5, 35,37,40,42,49,53,54,57,58,60,66,69,71–74,78,79,84,
86,90,91,93,95,97–100,103,106–108,111,115,121–123]

time-frequency and windowing

Statistical and distribution features are measures that describe distribution of signal’s
values. They include features such as average, rectiőed average, median, standard deviation
and variance, coefficient of variation (standard deviation divided by the mean), skewness,
kurtosis, higher central moments, peak (maximum) and peak-to-peak (maximum minus min-
imum) values, root mean square or Shannon entropy.
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Entropy, complexity and shape features are other features deőned in the time domain,
that describe dynamics of the signal in various ways. They include measures like zero cross-
ing rate, Hjorth’s parameters, turns count, Recurrence Quantiőcation Analysis parameters,
fractal dimension, fractal scaling index, various entropies, such as Tsallis, Permutation, Ap-
proximate, Sample, Symbolic or Fuzzy Entropy and various shape factors, such as crest,
impact, rapid change or margin factor. Finally, autoregressive features are also included in
this category.

Frequency features are generally deőned in the spectral domain. They mostly include
features describing power in speciőc frequency bands or their ratios. There are also some
features describing the shape of the spectrum, such as median or peak frequency, spectral or
Wiener entropy. Finally, some authors use cepstral coefficients as VAG features.

Time-frequency and windowed features are deőned on signal divided into short windows,
as described in previous section. Those features include mostly spectral ŕuctuations, i.e.,
changes of the spectrum in time, as described by various spectral features. Those include
spectral centroid, spread, skewness, kurtosis, entropy and other statistical measures calcu-
lated for the normalized spectrum. However, different features deőned on the windowed
signal, such as variance of mean squared signal, are also in this category, as well as features
deőned on time-frequency distributions, such as spectrogram. Finally, features involving
envelope calculation are classiőed as windowed features.

3.6 Feature selection and dimensionality reduction

After the feature extraction, and before the classiőcation, the dimensionality of the feature
space can be reduced. This step lowers the complexity of the classiőcation, while potentially
increasing generalization capabilities by minimizing the risk of overőtting. There are two
general approaches of reducing the feature space. The őrst one, feature selection, consists of
őnding a subset of features that are the most informative and, at the same time, possibly the
least redundant. The other approach, called in the rest of this review feature transformation,
consists of transforming the features using some statistical or machine learning approaches,
that can use information from all the features, potentially providing more informative fea-
tures that the feature selection algorithms. However, transforming the features renders them
difficult to interpret.

In the vibroarthrography őled, the őrst approach is much more popular. It can be further
divided into all-relevant and minimal-optimal feature selection. The all-relevant approach
consist of selecting features on their information content only, without taking into account
their redundancy. For example, n best features can be selected, like in work by Rangayyan
and Wu [54]. They selected two, four and six best features, according to their informativeness
measures. In the previous study analyzing the same signal base as in this dissertation,
Łysiak et al. [116] used one best feature describing each class pair. Another all-relevant
approach selects all features above some informativeness measure threshold. Karpiński [88],
for example, selected all features that showed statistically signiőcant differences between
groups.

Minimal-optimal feature selection approaches select the features iteratively. They can
be further divided into backward and forward feature selection. The former consists of
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iteratively removing singular least-informative features from the selected features set, starting
with all the features. That approach was used, for example, by Mascarenhas et al. [70], who
discarded the least important features describing sub-signals obtained by the Tunable Q
Wavelet Transform. In the forward feature selection approach, the singular, most informative
features is selected and iteratively aided by additional ones. That approach seem to be more
common in the VAG literature. Gharehbaghi et al. [100], for example, used it to reduce the
number of features used for classiőcation from 216 to 44.

There are also another, less popular approaches. For example, Gong et al. [41] clustered
the features base on their correlation. In a two-part study by Karpiński et al. [14, 15], the
neighbor component analysis was used to select the features. Some studies, for example
by Kręcisz and Bączkowicz [5], utilized the genetic algorithm approach to select the optimal
feature subset. Finally, small number of features in the original feature set enables exhaustive
searches for the subsets. Al-Timemy [65] extracted three features, which enabled evaluation
of all seven feature subset combinations.

Note, that the feature selection approaches always consist of somehow evaluating the
feature’s informativeness. There is a plethora of methods providing some kind of infor-
mativeness measure in the literature. Comparison of selected methods in the classiőcation
context was conducted in an earlier study [133], and method that proved to be the best will
be described in more detail in Section 8.1.

Dimensionality reduction algorithms consist of transforming the original feature set into
a set of smaller number of features, which are composites of various features of the original
feature set. For example, Principal Component Analysis works by identifying the orthogonal
directions, in which the feature values vary the most. Then, the original feature values are
projected onto these directions, resulting in a transformed dataset of lower dimensionality. In
the VAG literature, it was used by Ozmen et al. [73]. Another example of the dimensionality
reduction approach was utilized by Hersek et al. [72] and later by Richardson et al. [103].
They used nearest neighbors graph to compute one composite feature.

Summary of the feature dimensionality reduction approaches was provided in Table 3.9.

Table 3.9: Summary of the dimensionality reduction approaches used in the VAG literature.

references approach details

[54, 56,57,67,71,88,116] feature selection thresholding

[61,70] feature selection backward feature selection

[61,99,100,121] feature selection forward feature selection

[41] feature selection correlation clustering

[14,15] feature selection neighbour component analysis

[5, 51,52] feature selection genetic algorithm

[65] feature selection all possible feature combinations

[73]
dimensionality
reduction

principal component analysis

[72,103]
dimensionality
reduction

graph-based feature
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3.7 Classiőcation

All classiőcation algorithms consist of predicting the class label, given some information
about the signal, quantiőed by the features. Various classiőers were used in the vibroarthrog-
raphy őled, and their summary was provided in Table 3.10. Short description of each model
will be provided in this section.

One of the most popular models used for classiőcation in the VAG literature is a logistic
regression. Given a set of features, it calculates the probability of a certain binary event
occurrence, by passing the output of the linear regression function through a sigmoid func-
tion. That constraints the prediction of the class to the range from zero to one, which can
be interpreted as a probability of the given class. In the vibroarthrography őeld, it was used
in both early references, like Krishnan et al. [45] (1997), and more recent ones, like Ozmen
et al. [73] (2021).

Another popular classiőcation algorithm is the Linear Discriminant Analysis. It consists
of őnding a linear combination of features that maximizes the separation between classes, by
calculating a decision boundary. This boundary maximizes the distance between mean values
of classes and minimizes variance of the values within those classes. This algorithm was also
widely used in the VAG domain. For example, Rangayyan and Wu [52] used it for screening
purposes. The Linear Discriminant Analysis algorithm assumes that all classes have the same
covariance matrices, i.e., values of the features have similar variability across the classes. If
this assumption cannot be made, the Quadratic Discriminant Analysis algorithm can be
utilized. In the VAG domain, it was used by Wu et al. [114].

There are also classiőcation algorithms based on the Beyes’ theorem used in the vi-
broarthrography literature. Maximal Posterior Probability algorithm classiőes the unknown
sample to the class with the highest posterior probability, i.e., the class that appears most
likely to have produced this sample, given the probabilities of the classes of known sam-
ples. This approach can be used when all misclassiőcation costs are equal and numbers of
observations within the classes are approximately the same. It was used by Wu et al. [109]
for screening purposes. More general approach, the Bayesian Decision Rule, can be used
to additionally take into account costs associated with different classiőcations. It assigns
a sample to the class that minimizes the expected cost, which is calculated as the sum of
the costs of decisions weighted by their probabilities. It was used by Yang et al. [111] on
the same signal dataset, providing better screening accuracy (86.67% in [109] and 88.00%
in [111]).

One of the most intuitive classiőcation algorithms is the k -nearest neighbors algorithm.
It consists of determining the distance between the feature vector to be classiőed and the
already classiőed feature vectors. Then, considering k closest feature vectors (that is, nearest
neighbors), algorithm classiőes the feature vector to the most common class among the chosen
neighbors. There are two crucial parameters, that need to be chosen in this algorithm.
The őrst one is k, the number of neighbors to be considered. Smaller values make the
model more sensitive to nuanced differences between classes, but also more sensitive to
the noise. Greater values, on the other hand, make the őner class distinctions difficult,
but in general, make the classiőcation more robust to noise. Another crucial parameter is
the distance calculated between the feature vectors, with the most usual choice being the
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Euclidean distance. The k -nearest neighbors algorithm was used in a number of VAG studies.
For example, Gong et al. [41] used it to classify knee joints into junior and senior classes.
Additionally, they compared it to the linear regression classiőer, proving the superiority of
the k -nearest neighbors in their setup.

More complex machine learning classiőer commonly used in the VAG domain is the Sup-
port Vector Machine. In summary, it constructs an optimal hyperplane separating classes
in the feature space. It may seem similar to the Discriminant Analysis, however, instead of
maximizing the distance between means of classes and minimizing variance within classes, it
maximizes maximum marginal distances between the classes values. Moreover, the Discrim-
inant Analysis approaches assume, that the feature’s values follow Gaussian distribution.
This assumption is not necessary for the Support Vector Machine. It was used by Befrui et
al. [75] for knee joint screening purposes. If the data is not linearly separable, the nonlinear
Support Vector Machine can be implemented, which transforms the original feature space
to higher, linearly separable, dimension. It was used, for example, by Zheng et al. [74]

In comparisons to the Support Vector Machine, Two-Surface Proximal Classiőer also
attempts to construct separating hyperplanes for classiőcation. However, the process consists
in construction of not one, but two hyperplanes that are designed to enclose the data of each
class separately. These hyperplanes are positioned such that they are closer to their own
class feature vectors than to the vectors of the other class. Then, a classiőcation rule is to
assign an unknown feature vector to the class of the closest hyperplane. This approach was
used by Mu et al. [51] for VAG screening purposes.

Neural networks use slightly more complex architecture to achieve more ŕexible, non-
linear classiőcation boundaries. There is a plethora of neural network architectures used in
literature as classiőers. In general, they are composed of stacked layers of neurons. Each
neuron is characterized by at least one input and at least one output. Weighted sum of
the inputs is then transformed by so-called activation function, which output becomes the
output of the neuron.

The most basic neural network structure is called Multilayer Perceptron and consists of
at least three layers of neurons. The őrst layer is called the input layer and it receives the
feature vectors. It is followed by one or more hidden layers, after which the output layer is
positioned, usually delivering the class labels. The role of the hidden layers is to transform
the data into a space, where the classes can be separated more easily. It can be done
utilizing some (commonly nonlinear) activation functions. Usually, these activation functions
are monotonic, such as the hyperbolic tangent. Such structured neural network was used by
Karpiński et al. [15]. The activation function does not need to be monotonic, however. It can
also use the radial basis function, i.e., a function, which value depends only on the distance
between the input and some őxed point. An example could be the Gaussian function, which
output decreases with distance from the center. Multilayer Perceptron utilizing Radial Basis
Function as an activation layer is usually called Radial Basis Function Neural Network. It is
one of the most widely used neural network structures used in the VAG literature, with an
example usage for the screening purposes by the Rangayyan and Wu [52]. Another type of
architecture is a covolutional neural network. Those networks usually take raw (or somehow
preprocessed) data as an input and perform feature extraction implicitly, through the use
of convolutional layers. They are usually used in the image processing context. Kraft and
Bieber [69] used them for VAG screening, feeding them spectrogram pictures of the VAG
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signals.
Described classiőers all constitute singular learner strategies. Random Forest, on the

other hand, provides an ensemble methodology. It consists of multiple simple classiőers,
called weak learners, which singular classiőcations are later aggregated. The primary concept
behind Random Forests is to aggregate predictions of multiple decision trees. A decision tree
is a simple structure, organized in a hierarchical manner. Each node of the tree corresponds
to a feature and each branch represents a decision rule. Those structures, however, are prone
to overőtting, especially with high-dimensional features. To mitigate this problem, Random
Forests employ a number of decision trees, each generated from a subset of the training data.
Singular classiőcations are then aggregated, for example by taking the average classiőcation
label or taking a label with the greatest number of votes. Random Forests were used in VAG
literature quite commonly, for example, by Nalband et al. [63].

Another ensemble classiőcation methods are called Boosting algorithms. In a contrast to
Random Forests, instead of building weak learners independently from one another, Boosting
algorithms build them sequentially. Each learner is trained to correct the errors made by
the previous learner, which enables more precise classiőcation. In the VAG literature, the
XGBoost is the most popular boosting algorithm. In XGBoost, each new tree is őt on the
residual errors of the previous tree to gradually minimize the loss function. The process
is guided by the principle of gradient descent, where at each step, the algorithm moves in
the direction of steepest descent in the error surface. It was used, for example, by Semiz et
al. [98] for Juvenile Idiopathic Arthritis diagnosis.

Table 3.10: Summary of the classiőcation algorithms used in the VAG literature.

references classiőer

[5, 41,44,45,47,49,73,85,99,100,114] logistic regression

[50,52–54,56,57,61,68,109,116,121] linear discriminant analysis

[114] quadratic discriminant analysis

[109] maximal posterior probability

[111] bayesian decision rule

[41,85,116] k -nearest neighbors

[5, 55,57,58,60,66–68,70,74,75,85,109,111,114,116,121] support vector machine

[51] strict 2-surface proximal classiőer

[5, 14,15,52–54,56,61,69,78,79,85,88,116,121] neural network

[5, 63,70,71,116] random forest

[65,98,116,121] boosting algorithms

Even though there are multiple VAG-related works studying more than two groups in the
literature (see Table 3.1), most studies regarding classiőcation implement binary approaches.
That is, the classiőer differentiates two classes, either as a screening toolÐdistinguishing
healthy knee joint from somehow unhealthy or injured oneÐor as more specialized one, dis-
tinguishing some speciőc disease. There are some exception to that, however. For example,
Krishan et al. [45] employed discriminant analysis to classify signals into 6 classes: normal
silent, normal noisy, arthroscopically normal, arthroscopically abnormal, historically normal
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silenty and historically normal noisy. In this setup, accuracy of the classiőer reached 46.94%.
Another multi-class classiőcation example is a study by Kręcisz and Bączkowicz [5], sig-

nals from which are also analyzed in this dissertation. They implemented multiple classiőers,
namely logistic regression, neural network, support vector machine and random forest. Ac-
curacy of the 5-class classiőcation reached up to 69%, for both logistic regression and neural
network. In another study utilizing the same signal base, Łysiak et al. [116] achieved up to
67% accuracy using support vector machine.

Regardless of whether the task is binary or multi-class classiőcation, the challenge of
overőtting persists. Overőtting refers to a model őtting to the training data too closely,
learning the noise along with the desired information. The overőtted model is unable to
generalize to new feature vectors, poorly predicting the actual class. To reduce this problem,
cross-validation strategies are typically employed. They consist of partitioning the original
samples into a set of folds. The model is then trained on all but one fold and validated,
or tested, on the remaining one. This process is iterated, with each fold serving as the test
set once. The average classiőcation performance across all iterations is then reported as
a predictive capability of the model. A speciőc case of cross-validation, the leave-one-out
strategy, is especially relevant in scenarios where the dataset is small. In this strategy, the
model is trained on all samples but one, which is left out for validation. The process is
then repeated for each sample in the dataset, providing a comprehensive assessment of the
model’s predictive power. This strategy was implemented in the overwhelming majority
of VAG studies regarding classiőcation, and as so, will also be utilized in the rest of this
dissertation.
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Chapter 4

Preprocessing

In this chapter, the preprocessing methodology will be described. The őrst section will be
devoted to the general introduction to the preprocessing. Then, two key characteristics of
signals will be shortly discussed, i.e., the normality and stationarity. In the following section,
a description of the Butterworth őlter and the differentiation operation will be included. Fi-
nally, the last section will be devoted to the comparison of the chosen preprocessing methods.

4.1 Introduction

Preprocessing is an essential step in the signal classiőcation pipeline, which, in general,
consists of transforming a signal into another signal of improved quality. The main goal of
the preprocessing is to remove noise, i.e., to remove such changes in the signal, that do not
correspond to the classiőed condition. There is an additional goal, which does not necessarily
takes the classiőcation context into consideration. This goal is to transform the raw signal
into a preprocessed signal that fulőlls some conditions needed to be met before further
feature extraction. For example, some features, in order to be interpretable, require values
of a signal to follow a normal distribution. Another requirement can be stationarity, which
is a property assuring the statistical properties of a signal remain constant over time. As
features are extracted on the preprocessed signals, the inŕuence of the speciőc preprocessing
method on a signal’s information content is of great importance.

There are various preprocessing methods used in the VAG literature, as listed in the
Chapter 3. In this dissertation, two speciőc methods will be utilized, namely the Butterworth
őlter and the differentiation operation. Additionally, the features will be extracted on the
raw signal, i.e., the signal without preprocessing. This chapter will include details of the
chosen methods and their inŕuence on the signals’ properties. In the following section, the
normality and stationarity properties will be described, followed by more detailed description
of the utilized preprocessing methods.

4.2 Normality and stationarity of a signal

4.2.1 Normality

In the vibroarthrogram classiőcation context, the distribution of signal values can be a highly
informative descriptor of the underlying knee-joint condition. These values, depending on
their occurrences, form speciőc patterns that can be visualized as a distribution curve. Visual
inspection of this curve often reveals the general variation of values within the signal, like
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clustering of values around a central point, symmetry, or skewness. In a normally distributed
signal, the majority of the values gravitate around a central mean, and progressively fewer
values are found as the distance from the mean increases, resulting in the characteristic bell
shape. This distribution pattern is of great importance, since any deviations from it can be
intuitively explained. For example, signals generated by a highly damaged, "squeaky" knee
joint would contain high-amplitude spikes making the distribution of values heavy-tailed. On
the other hand, healthy, "silent", knee joints would produce signals with less high amplitude
spikes, leading to more normal-like distribution.

Popular statistical tests for normality, such as Kolmogorov–Smirnov test or Shapiro-
Wilk test, are very useful tools for normality assessment in moderate sample sizes. However,
with larger sample sizes (n ≥ 300), they can be over-sensitive [134]. That is, even very small
deviation of the sample from normal distribution, causes them to reject the null hypothesis of
normality. This can lead to an overemphasis on minor irregularities that may not signiőcantly
affect subsequent analysis. Since each vibroarthrogram analyzed in this dissertation is over
60-thousand sample long, using normality tests to compare signals after each preprocessing
would not be of great value. Instead, visual methods of quantile-quantile plots and histogram
will be used, along with skewness and kurtosis measures.

Quantile-Quantile (QQ) plots consists of plotting the sorted values of the sample against
the expected values of the corresponding quantiles from a normal distribution. In these plots,
if the data points largely follow the 45-degree reference line, this suggests that the sample data
has a distribution similar to the normal one [135]. Histograms, on the other hand, provide a
visual representation of data distribution by grouping a range of values into bins and showing
the frequency of observations in each bin. A normal distribution can be additionally overlaid
on the histogram, allowing more direct comparison of the sample and the normal distribution
shapes [135]. Finally, summary statistics such as skewness and kurtosis offer quantitative
measures of a distribution’s shape. Skewness measures the asymmetry of a distribution
around its mean. Values close to zero indicate symmetric distribution, while negative and
positive values indicate left- and right-skewed distribution [135]. Kurtosis quantiőes the
heaviness of the tails of a distribution, with a value close to zero suggesting a distribution
similar to the normal one in terms of its tail behavior. Positive values of kurtosis indicate a
distribution with heavier tails and a higher peak compared to a normal distribution, implying
that the distribution has more extreme values or outliers than a normal distribution. On the
other hand, negative values of kurtosis indicate a distribution with lighter tails and a ŕatter
peak compared to a normal distribution, suggesting that the distribution has fewer extreme
values or outliers than a normal distribution [135].

In the context of signal analysis, the normality can be a very useful concept. However,
there are some major drawbacks to exclusively using measures describing the distribution.
A signal represent change of some value in time. Focusing solely on distribution results in
loss of information regarding the dynamics of a signal. For example, a signal composed of
randomly generated normally distributed values would have the same normal distribution
as a signal composed of the same values, but sorted. Their temporal ordering, or dynamics,
however, would be completely different. When the distribution of a signal is examined
as a whole, it does not specify which part or period within the signal contributes most
signiőcantly to this distribution. A more comprehensive understanding of the signal may
be achieved by assuming that the signal’s statistical properties, such as mean and variance,
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remain consistent over time, across different segments of the signal. If such assumption is
correct, the signal is considered to be stationary [136].

4.2.2 Stationarity

Stationarity is a fundamental property in signal analysis, referring to a signal maintaining
its statistical characteristics, such as mean and variance, over time [10]. As mentioned in
previous section, this property is of great importance due to the inherently temporal aspect
of signals. Ensuring the statistical properties observed in one segment of the signal are likely
to remain consistent in another segment allows more reliable interpretation of extracted
features. In stationary signals, the statistical parameters of the signal are representative of
the entire signal, despite the time-dependent nature of the data. The vibroarthrographic
signals are non-stationary by nature [10]. However, making them more stationary, could
potentially yield more informative features.

There is a plethora of strict stationarity tests used in the literature, with the most
widely used being Augmented Dickey-Fuller, Kwiatkowski-Phillips-Schmidt-Shin or Phillips-
Perron [137]. However, they are mostly concerned about unit-root non-stationarity (i.e.,
resemblance of a signal to a random walk) or trend-stationarity (i.e., presence of a trend in
a signal) [136]. These forms of non-stationarity may not adequately capture or address the
types of time-dependent structure that are of interest in biomedical signal analysis őelds, such
as vibroarthrography, where changes in physiological states can result in complex, nonlinear
dynamics [10].

Therefore, stationarity will be quantiőed differently in the remaining part of this chapter.
First, to quantify changes of summary statistics, the signal will be windowed, i.e., split into
5-ms, or 50-sample segments1. In those windows, summary statistics of the mean value and
variance will be calculated. Finally, variability of the obtained signals will be quantiőed by
the coefficient of variation [138], i.e., standard deviation divided by the average value. This
coefficient is used mostly for non-negative samples, since average values close or equal to zero
could render it extremely large or undeőned [10]. And since vibroarthrograms are roughly
symmetrical, before calculating the coefficient, signals obtained by the rolling statistics are
normalized to scale of zero to one.

Therefore, speciőc values used to quantify stationarity of a signal will be called Coefficient
of Variation of the Normalized Moving Average (CVNMA) and Coefficient of Variation of
the Normalized Moving Variance (CVNMV). Higher values of the CVNMA indicate more
changes in the average value across the signal, while higher values of the CVNMV indicate
more changes in the variability across the signal. Importantly, the CVNMV value does
not provide information about the general variability of a signal, but rather consistency of
variability across the signal.

One would argue, that the fundamental limitation of using the CVNMA and CVNMV
measures is similar to normality limitation described in the previous section. That is, coef-
őcient of variation does not depend on temporal ordering of samples, and therefore cannot
be used to describe dynamics of a signal. However, segmenting signals, and subsequently

1This window size was chosen since 5-ms window was consistently used in the VAG őeld [53], in various
measuring setups, including signals analyzed in this dissertation [5].



44 CHAPTER 4. PREPROCESSING

extracting rolling features, can provide information about the dynamic characteristics of the
signal that are crucial for assessing stationarity. In other words, in the context of station-
arity, the critical aspect is not the speciőc way in which a given statistic changes over time,
but the overall degree of variation it exhibits throughout the entire signal’s length.

4.3 Description of the preprocessing methods

In this section, speciőc preprocessing methods will be described, focusing on the Butterworth
őlter, and the differentiation operator. Both preprocessing methods were chosen following
evaluation of their properties, interpretability, and successful applications in similar con-
texts. Additionally, in the following sections, the no-preprocessing will also be treated as
a preprocessing method, to keep in line with the signal analysis pipeline described in the
Chapter 3. Unprocessed, or raw signals, though seemingly less informative, present an im-
portant baseline to which the effectiveness of other preprocessing methods will be compared.
The following subsections will focus on the Butterworth őlter and the differentiation opera-
tion. Their deőnition in time will be included as well as frequency response in form of the
magnitude response and the phase response.

The magnitude response is a measure of how an input signal’s amplitude is affected
by the preprocessing method at each frequency component. It provides insights into how
various frequency components in a signal are attenuated or ampliőed after the processing.
For example, the 10-sample moving average őlter would not greatly affect sine wave with a
period of a hundred samples. However, a sine wave with a period of őve samples would be
greatly attenuated by the same őlter.

The phase response represents the phase shift introduced by the preprocessing method at
each frequency component. It shows how this method affect the timing of different frequency
components in the signal, indicating how the phase of the signal is changed. For example, a
step signal, transitioning from zero to one, could be processed through a 10-sample moving
average őlter. The signal after the processing would not instantaneously reach one, but
gradually increase over subsequent samples until all samples in a window would equal to
the step change. Analysis of the phase response is of great importance, since it can reveal
temporal distortions introduced by the preprocessing method, potentially inŕuencing the
interpretability of subsequently extracted features.

4.3.1 Butterworth őlter

The Butterworth őlter is a frequency selective őlter, that is, it is designed to pass or attenuate
speciőc frequency components of the signal. Compared to different types of such őlters, like
Chebyshev or Elliptic, which all have a characteristic ripple in a pass-band, the Butterworth
őlter has by maximally ŕat pass-band [10]. However, compared to those other őlter types,
the Butterworth has relatively slow roll-off, or low steepness, around the cutoff frequency.
Increasing the order of the őlter can make the roll-off more steep. However, it also increases
the phase distortion. The general disadvantage of the Butterworth őlter is its nonlinear
phase response. This issue can be easily mitigated, however, by using zero-phase őltering
scheme. It consists of successively őltering the signal two times using the same őlter, but
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for the second őltering, the signal is reversed in time [10]. Notably, zero-phase procedure
cannot be used in real time, but this is not an issue for the off-line approach took in this
dissertation.

The design of a digital Butterworth őlter is usually done in the continuous space. Then,
using bilinear transformation, the transfer function in the s-domain is transformed to the
z-domain. Finally, the őlter coefficients bk and ak can be obtained from the transfer function,
allowing to represent őlter in the time domain [10]:

y(n) =
N
∑

k=0

bk · x(n− k)−
N
∑

k=1

ak · y(n− k), (4.1)

where y is the őltered version of a signal x, and N is the order of the őlter. Here the summa-
tions represent the fact that the őlter’s output at any time point n is a linear combination
of the present and past input values, as well as past output values, weighted by the őlter’s
coefficients.

Figure 4.1: Frequency response of the 4-th order zero-phase Butterworth őlter: the magni-
tude response (upper plot), and the phase response (lower plot). Dotted lines correspond to
the őlter pass-band: 50 Hz and 1000 Hz.

A speciőc implementation of the Butterworth őlter used in this dissertation will be 4th-
order and zero-phase, i.e., two 2nd-order őlters cascaded in series, ensuring that the overall
őlter has a zero-phase response. The őlter was designed to pass frequencies between 50 Hz
and 1000 Hz, as in previous studies utilizing the same base of vibroarthrograms [5]. The
magnitude and phase response of this őlter were plotted in Figure 4.1.
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4.3.2 Differentiation

Difference operator, in contrast to the Butterworth őlter, is not frequency-selective. Instead,
it can be generally understood as high-pass őlter, with the magnitude response increasing
from zero for the constant component (frequency of zero) to two for the Nyquist frequency.
The difference operation is widely used in the literature to őlter out low-frequency noise,
such as the baseline drift [10], however, it can potentially make high-frequency noise more
prominent in the őltered signal. In the time domain, it is simply deőned as [10]:

y(n) = x(n)− x(n− 1), (4.2)

where y is the őltered version of a signal x.

Figure 4.2: Frequency response of the difference operator: the magnitude response (upper
plot), and the phase response (lower plot).

The frequency response of the difference operator was included in the Figure 4.2. Note,
that the phase response is not constant like in the zero-phase Butterworth őlter. It decreases
linearly from π/2 to zero, indicating that the lowest frequencies are delayed in the őltered
signal by about 1/4 of their period. Consecutive frequencies are less delayed, up to the Nyquist
frequency, which is not delayed at all.

4.4 Comparison of the preprocessing methods

Exemplary raw, Butterworth őltered and derivative signals, with their corresponding power
spectral densities were included in Figure 4.3. To estimate the power spectral density, peri-
odogram was used. More detailed description of this approach will be provided in Chapter 6.
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Figure 4.3: Exemplary vibroarthrogram of the osteoarthritis group (upper row) after őltering
with the Butterworth őlter (middle row) and after the difference operation (lower row) in the
time domain (left column). Corresponding periodograms were plotted in the right column.

The most notable difference in the time domain plots is perhaps the lack of low-frequency
baseline drift in both őltered signals, compared to the raw signal. Comparison of both pre-
processing methods reveals generally more strict őltration of the low and medium frequencies
by the difference operator, as well as őltration of very high frequencies by the Butterworth
őlter. See, for example, a big spike at a time of about half a second. Firstly, in the But-
terworth őltered signal it is more spread out in time, it appears "fatter". In other words, it
is composed of more medium-frequency components. Also, see that in the derivative signal,
this spike is proceeded by a spike of similar amplitude, but shorter duration. Note, that it
was almost completely attenuated by the Butterworth őlter. On the other hand, a spike at
around one-second mark, which is clearly visible in the Butterworth őltered signal, is almost
completely lost in the derivative signal. It can be explained by its low-frequency compo-
nents, which were attenuated by the difference operator. See also, that spikes which can be
seen on both signals, such as the spike just after one-second mark, have clear differences in
amplitudes. This difference corresponds to the duration of a spike. The longer it lasts, the
lower its frequency, and hence, the more it gets attenuated by the difference operator. On
the other hand, short spikes, or high-frequency spikes, get attenuated by the Butterworth
őlter and ampliőed by the difference operator. Similar conclusions can be derived from visual
inspection of the remaining part of the signals.

Frequency domain plots reveal similar conclusions. Lower frequencies, up to about 10 Hz,
dominate the raw signal. The Butterworth őltered signal, according to its design, occupies
frequency range of 50 Hz to 1000 Hz. Frequencies of about 500 Hz to 2000 Hz are mostly
visible in the derivative signal. Note, however, that while Butterworth attenuates all fre-
quencies but the pass-band, the difference operator passes some of the more pronounced
low-frequency components, such as those just below 10 Hz.



Chapter 5

Signal analysis in time domain

In this chapter, features extracted from the signal in the time domain will be described,
broadly divided into őve categories:

• statistical, including features describing the signal without taking into consideration
temporal ordering of samples,

• rolling, including features calculated on the basis of some feature signals,

• difference and frequency, including features based on temporal ŕuctuation of the sig-
nal’s values,

• self-similarity, including features based on Autocorrelation Function and Multifractal
Detrended Fluctuation Analysis,

• phase space, including features based on the embedded signal.

This division of features is introduced primarily for the sake of clarity. Although it is not
completely arbitrary, it should not be considered as őxed.

5.1 Statistical features

Features in this category do not extract from signal any information about the temporal
ordering of its samples. In other words, the signal is treated as a collection of unrelated
values, disregarding any potential patterns that may exist among them. For example, a
signal will have the same standard deviation as its sorted version, as well as its randomly
permuted version. Nevertheless, in the context of VAG classiőcation, statistical measures
are widely used and, in many cases, prove to be quite informative. For the sake of clarity,
statistical features will be further divided into basic features, which are calculated directly
on the signal’s samples, and shape features, which are deőned using the basic features.

5.1.1 Basic statistical features

Basic statistical features include measures of central tendency, such as mean value, mode
and median. Since distributions of the vibroarthrograms analyzed in this work are slightly
skewed (see Chapter 9), including multiple measures of central tendency could potentially
reveal different information. The mean value (µ) indicates the baseline around which the
signal ŕuctuates. Median, on the other hand, is a value, that separates high signal values
from low signal values. Since VAG signals have quite a lot of extreme values, median can
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indicate typical values more robustly than mean. Mode, in contrast to mean or median,
indicates which one speciőc value appears most frequently in a signal. VAG signals analyzed
in this dissertation were digitized by the 12-bit ADC, and therefore can take only 4096
values. And because they last for over 60 thousand samples, some discrete values have to
occur multiple times. Therefore, even though the samples can generally be interpreted as
real values, their mode can be determined.

Vibroarthrograms are generally symmetrical, therefore central tendency measures are
not often used in VAG literature. Nevertheless, some studies successfully used them. For
example, Karpiński et al. [14, 15] used the average value of the signal samples, while Scher-
pereel et al. [121] used both mean and median. Rangayyan and Wu [56] used mean value of
the estimated probability density functions. In all those studies, however, central tendency
measures were used along some other features.

Features measuring power of the signal are deőned similarly to central tendencies, but
are calculated on the magnitude of the values, i.e., discarding information about the sample’s
sign. Three such features will be used: the Average Signal Power (ASP), the Root Mean
Square (RMS) and the Rectiőed Average (RAV). The ASP is deőned as the average value
of the squared signal values. As the name suggests, it provides information about the power
of the signal. Its square root can be interpreted as the average magnitude of the signal
and is called the RMS. Finally, the RAV feature is calculated as the average value of the
signal’s absolute values. It is similar in interpretation to the RMS, but since the RMS
include squaring the values, it is more inŕuenced by the extreme samples. Therefore, RAV
is generally smaller than the RMS. This difference in sensitivity to extreme values means
that RMS and RAV provide complementary information about the vibroarthrogram. The
RMS can distinguish signals with large peaks or spikes, while the RAV can provide a more
general measure of the signal’s overall activity.

Calculation of power measures in VAG domain is much more popular, with the RMS
feature being the most common choice [14, 15, 68, 88, 100, 121], followed by the RAV [14, 15,
88,121]. The ASP feature was used less often [100,121]. Both the central tendency and the
power features, with their explicit deőnitions, were summarized in Table 5.1.

Table 5.1: Summary of the central tendency and power statistical features.

name deőnition remarks

Mean µ = 1
n

∑n
i=1 x(i) x(i) is the i-th sample of the n-sample signal x.

Mode m = maxi {fX(i)} fX is a frequency of values in the signal.

Median M =
(x)(n

2 )+(x)(n
2 +1

2 ) (x) is the sorted set of signal values.

Average Signal Power ASP = 1
n

∑n
i=1 x(i)

2

Root Mean Square RMS =
√

1
n

∑n
i=1 x(i)

2

Rectiőed Average RAV = 1
n

∑n
i=1 |x(i)|

Central tendency and power features indicate some general levels of a signal, disregarding
information about the dispersion of the sample values around those general levels. In order
to measure this dispersion, spread features can be used. Perhaps the most straightforward
measure of dispersion is the variance. First, each signal sample is subtracted from the its
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mean value. Then, to measure both positive and negative discrepancies, each difference is
squared. The variance is calculated as the average of those differences. Since units of variance
are units of the original signal squared, the more intuitive measure is its square root, i.e.,
the Standard Deviation (std) or σ. Both variance [14, 15, 68, 81, 88] and std [56, 68, 121] are
popular measures used in VAG domain. Measure similar to the std is the Mean Absolute
Deviation (MeanAD). It is calculated similarly to the variance, but instead of squaring the
differences, their absolute value is taken to calculate the mean. Since the MeanAD does not
include squaring operation, it is less inŕuenced by extreme values. The difference between
std and MeanAD is the same as between RMS and RAV. The MeanAD is generally smaller
than the std. Other spread measure, even more robust to extreme values is the Median
Absolute Deviation (MedianAD). It is calculated similarly to the MeanAD, but both means
are replaced by medians in its deőnition.

Another approach to measuring the spread of values is measuring the literal spread, i.e.,
the difference between the maximal and the minimal value. It was used in a number of
VAG-related studies [14, 15, 88, 121]. Since it is deőned on just two most extreme values,
it can be considered the least robust measure to outliers. This robustness can be slightly
improved, however, by replacing the lowest and the highest values by the average of the
four lowest and highest values, respectively [5]. Similar approach of measuring the difference
between some high and low value is employed in the deőnition of the Interquartile Range,
i.e., the difference between the 75-th and the 25-th percentile. Percentile is a speciőc value
in a distribution, below which a given percentage of the samples falls. For example, 100-th
percentile is a maximum value, while a 50-th percentile represents the median. Interquartile
range is therefore a "width" of the central part of a distribution containing half of the samples.
However, various percentages different than 25-th or 75-th could potentially be used. In this
work, therefore, various percentile ranges were used as features, in a range from 0-th to
100-th percentile with a step of ten. As a result, 55, that is,

(

11
2

)

, Interpercentile Range
(IPerR) features were deőned. To make their interpretation easier, a simple visualization
was provided in the Figure 5.1 (left plot).

Figure 5.1: Exemplary percentile ranges (left) and singular percentiles plots (right).

The x - and y-axes in the left plot of Figure 5.1 correspond to the lower and upper range
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values, respectively. The color axis indicates the speciőc value of the difference between
the percentiles in the y- and x -axis. Interquartile Range was indicated by the black dot,
and the line passing through it corresponds to various different ranges encompassing half
of the samples. One could argue, that similarly to the median value, other percentiles
could also be used as features independently, i.e., not in a difference with other percentiles.
For example, within the VAG domain, the 0-th and 100-th percentiles, i.e., the minimal and
maximal values, were used by Scherpereel et al. [121]. Therefore, in this work, 101 additional
percentile values, from the 0-th to the 100-th percentile with a step of one were extracted. To
make their interpretation easier, they were also plotted in the right plot of Figure 5.1, where
the x -axis indicates speciőc percentile and the y-axis speciőc numerical value. Note that
both plots were obtained for an exemplary signal (the same signal as in previous examples),
and they contain only the information about this speciőc signal. In the results chapter, both
the color axis in the percentile ranges plot and the y-axis in the singular percentiles plot will
include informativeness of the feature instead of the speciőc signal’s value.

Summary of the spread measures, with their respective deőnitions, was provided in Ta-
ble 5.2.

Table 5.2: Summary of the statistical spread features.

name deőnition remarks

Variance σ2 = 1
n

∑n
i=1(x(i)− µ)2

Standard Deviation σ =
√

1
n

∑n
i=1(x(i)− µ)2

Mean Absolute
Deviation

MeanAD = 1
n

∑n
i=1 |x(i)− µ|

Median Absolute
Deviation

MedianAD = median (|x(i)−M |) ∀i = 1, 2, ..., n

Spread s = max(x)−min(x)
max and min denote maximum and
minimum value of the signal x,
respectively.

R4 R4 = 1
4

∑n
i=n−3(x)(i)− 1

4

∑4
i=1(x)(i) (x) is the sorted set of signal values.

Interpercentile
Range

IPerR = QP (u)−QP (l)
u is the upper percentile and l is the lower
percentile.

Percentile QP (p) = (x)(⌈ np
100⌉)

(x) is the sorted set of signal values, np is
the product of the total number of data
points and the quantile level.

Spread measures provide general information about the dispersion of samples around
some central measure. However, they do not convey any information about the shape of the
distribution. Shape can be interpreted in many ways and there are many features quantifying
various shape characteristics. Previously mentioned skewness, for example, measure symme-
try of the distribution. Negative values reveal that the tail of the distribution is skewed to
the left, i.e., that the majority of samples are concentrated on the right side of the distribu-
tion, with a few extreme values pulling the tail towards the left. Positive values indicate the
contrary, while skewness equal to zero characterize distributions with equal "weight" on both
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sides1. Kurtosis measures heaviness of the tails of a distribution, in comparison to the normal
distribution, which has the kurtosis of zero. Positive and negative kurtosis values indicate a
distribution with heavier and lighter tails, respectively, or a higher and ŕatter peak, respec-
tively. Both skewness [41,51,52,56–58,71,74,81] and kurtosis [14,15,41,51,52,56,58,71,81,88]
are popular features extracted from VAG signals.

Another characteristic of a signals shape can be how "spiky" it is, i.e., how many high-
amplitude spikes it has. This can by quantiőed by the Spiky Index used in VAG analysis
by Athavale and Krishnan [68]. It was deőned as the number of prominent peaks divided
by the recording time. In this work, however, number of samples will be used instead
of recording time, to make the measure easily interpretable. In the original paper [68],
peaks that are prominent were deőned as samples of amplitude at least half of the maximal
amplitude. However, choosing different threshold could potentially make to Spiky Index (SI)
more informative. Therefore, in this work, multiple thresholds will be tested, from zero to
one with increments of one percent. That will result in 101 distinct features. Moreover,
since VAG signals are rather symmetrical, additional feature will also be tested, called the
Rectiőed Spiky Index (RSI). It is deőned similarly to the traditional SI, however, on absolute
signal values. That is, it will measure magnitude of the signal instead of the amplitude. The
RSI will be calculated for the same threshold range as the SI.

Entropy is another measure of the distribution’s shape. It is deőned for discrete distribu-
tions, as the negative sum of the speciőc probabilities in the distribution multiplied by their
logarithm. It measures the uncertainty, and increases with the "ŕatness" of the distribution,
achieving the highest value for the uniform distributions. Minimal entropy value is achieved
for the distribution with only one value, representing a set of identical values. Signal of
minimal entropy would have a constant amplitude. In such case, the entropy is equal to
zero. For continuous distributions, the entropy can be estimated using, for example, the bin-
ning method, i.e., splitting the distribution into speciőc number of bins, and treating each
real value in a speciőc bin as the discrete value representing this bin. Such approach was
utilized in a number of VAG-related studies [5,51,52,56–58,74]. However, choosing number
of bins is not a straightforward procedure and has a great inŕuence on the estimated entropy
value [139]. In the VAG literature, a hundred bins is usually used [52, 58]. However, work
by Athavale and Krishnan [68] showed that encoding a signal into just three bits seem to
not only keep its informativeness, but even enhance it. Authors did not extracted entropy,
but their work indicated that bin number much smaller than a hundred could potentially be
informative. Therefore, a range of bins was used for estimation, giving a hundred entropy
estimation features for each signal: from two to a hundred bins and one additional bin of
4096 values, representing resolution of the used 12-bit ADC.

There is also an entropy measure deőned for continuous distributions, called the differ-
ential entropy [140]. It is deőned similarly to the discrete version, however, instead of the
sum, the integral is taken. That makes it more difficult to interpret, since it is not bounded
by zero and can take values from negative to positive inőnity. However, in the context of
feature extraction that is not a problem, since absolute entropy values are of less interest
than entropy values relative to other signals. There is another issue, however. Since the

1Note, that distributions with the same or balanced "weight" on both sides, but different shapes would
also have zero skewness.
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probability distribution is not explicitly known, differential entropy needs to be estimated
somehow. A popular method of estimation is using the Kozachenko-Leonenko estimator,
based on the concept of the k -nearest neighbors [141].

The general idea is that the local probability density can be estimated using the reciprocal
of distance between neighboring samples2. Choosing the number of samples, however, is not
trivial. Too small values result in high statistical errors of the estimate, while too large
values increase the systematic errors [141]. That is, small values make the estimation less
stable, while high values tend to systematically underestimate the entropy, since they weaken
the distinction between nearby and distant samples. This means that high values cause the
estimation to lose sensitivity to local variations in the data, potentially missing important
őne-grained patterns. Therefore, in this work, estimates based on őve distinct k values were
used: k equal to 1 as an extreme and simple case, k equal to 2, 3, and 4, as recommended
by [141], and k equal to the rounded down square root of the number of samples, as a general
rule of thumb used in the context of k -nearest neighbor approaches [142].

There is also another measure of entropy, which was used in the VAG literature, calculated
directly on the samples. Log Energy Entropy [143] is deőned as the sum of the logarithms of
squared signal samples. In this work its normalized version will be used, i.e., using the average
value instead of the sum. Since it is not calculated on the probability, its interpretation is
different from the entropy used in information theory. Here, squaring the signal values creates
a representation of the energy at each sample. Taking the logarithm transforms each value
into a logarithmic scale, and averaging those values gives some central measure. Therefore,
even though Log Energy Entropy (LEE) is called entropy, it does not measure uncertainty
in a traditional sense.

Table 5.3: Summary of the simple statistical shape and entropy features.

name deőnition remarks

Skewness skew =
1
n

∑n
i=1(x(i)−µ)3

s3

Kurtosis kurt =
1
n

∑n
i=1(x(i)−µ)4

s4
− 3

Spiky Index
SIα = 1

n

∑n
i=1

I(xi > α ·max(x))

α is the threshold, I is the indicator
function, which equals to 1 if the
condition is true, and to 0 otherwise.

Rectiőed Spiky Index RSIα = 1
n

∑n
i=1 I(|x(i)| > α ·max(|x|))

Entropy (binning) Hb = −∑b
i=1 p(x(i)) ln p(x(i))

b is the number of histogram bins,
p(x(i)) is the probability of the i-th
bin.

Entropy (k -nn)
hk = −ψ(k) + ψ(n)+
ln(2) + 1

n

∑n
i=1 ln(2 · ri)

ψ is the digamma function, k is the
number of neighbors, ri is the distance
from x(i) to its k-th neighbor.

Log Energy Entropy LEE = 1
n

∑n
i=1 ln(x(i)

2)

2As mentioned previously, since the signals are digitized, some of their samples have to have the same
amplitude. Therefore, some of the distances will be equal to zero. To make the calculations possible, for
the sake of entropy estimation, signal was additionally distorted with noise of low amplitude (10−10), as
recommended by [141].
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Described shape and entropy measures, with their corresponding deőnitions, were sum-
marized in Table 5.3.

5.1.2 Complex statistical features

Some of the described features were more complex than others, but most of them were deőned
on speciőc sample values or their probabilities. There are some statistical features used in
literature, however, that are deőned on already obtained summary statistics. They will be
called complex statistical shape features in the remaining part of this work. One of the most
popular of such features is the Coefficient of Variation (CV) [138], used on the normalized
VAG signals by Rangayyan and Wu [56]. It is deőned as the standard deviation divided by
the average value. It measures variability of samples relative to their mean and is useful in
comparing variability across signals with different scales, but can be skewed or undeőned
if the mean is close to zero. As most VAG signals have close-to-zero mean, two modiőed
versions of the CV will be additionally used. The Modiőed Coefficient of Variation (MCV)
is deőned as the standard deviation divided by the mean of samples’ absolute values, i.e.,
the RAV. It does not account for the variability of the rectiőed values, however, therefore
one additional measure will be used, the Rectiőed Coefficient of Variation (RCV). It is very
similar to the traditional CV, however, it is deőned on the absolute values only, that is, both
the standard deviation and the average are calculated on the absolute values of the signal.
The RCV measures the variability in the magnitude of the data relative to the mean of the
magnitudes.

There are also some shape measures used frequently in vibration signal analysis context,
called factors. The Form Factor (FF) [144], deőned as the RMS divided by the RAV measures
how much greater is the average power of the signal compared to its average magnitude.
Values close to one indicate similarity of the signal to the constant signal, while progressively
smaller values indicate more ŕuctuations. Another measure, called the Crest Factor (CF)
is deőned as ratio of the maximal signal value to its RMS value [145, 146]. It quantiőes
closeness of extreme values to the average signal power. Similar measure, called the Impulse
Factor (IF), uses RAV instead of the RMS [145, 146]. That is, it measures closeness of
extreme values to the average signal magnitude. Both the CF and the IF were used in the
VAG domain by Karpiński et al. [14,15,88], as well as Athavale and Krishnan [68]. Another
factor, called the Margin Factor (MF) is deőned as the maximal magnitude of the signal
divided by the squared average square root of the rectiőed signal. Those three features, the
CF, the IF and the MF, provide information about peak behavior within the signal. They
differ the most in the "baseline" they use to compare peaks. It is worth noting, that their
usage of maximal value make them relatively sensitive to outliers.

All of the complex statistical shape features, with their respective deőnitions, were sum-
marized in Table 5.4.

5.2 Rolling features

Rolling features are the őrst category of time-domain measures, that actually incorporate
information about temporal ordering of samples into extracted feature. They are deőned as
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Table 5.4: Summary of the complex statistical shape features.

name deőnition

Coefficient of Variation CV = σ
µ

Modiőed Coefficient of Variation MCV = σ
RAV

Rectiőed Coefficient of Variation RCV =

√
1
n

∑
n
i=1(|x(i)|−RAV )2

RAV

Form Factor FF = RMS
RAV

Crest Factor CF = max(x)
RMS

Impulse Factor IF = max(x)
RAV

Margin Factor MF = max(|x|)

( 1
n

∑
n
i=1

√
|x(i)|)2

some statistical features of the moving window signal. First, the signal is split into windows
of őxed length, with one-sample shorter overlap. Then, for each window, some summary
statistic is calculated. This rolling statistic is then treated as a feature signal, which can be
used to extract features. Those extracted features can themselves be just summary statistics,
not incorporating temporal ordering into the extracted feature. However, the őrst step of
splitting the original signal into windows ensures, that the temporal ordering of the original
signal samples is preserved. Therefore, all rolling features inherently incorporate temporal
ordering information.

The őrst rolling feature is the Variance of the Mean Squared (VMS), deőned by Ran-
gayyan and Wu [53] and then used in a number of VAG-related studies [5,54,57,58,60,74,109].
It is deőned as the variance of the mean-square rolling statistic. It represents variability of
the average signal power across its duration. Another two features, the CVNMA and the
CVNMV were described in previous chapter. However, in that context, they were calcu-
lated for all the signals after some preprocessing. In the current context, they will be used
to differentiate speciőc VAG classes. In summary, they are calculated as the coefficient of
variation of the moving mean and moving variance. Note, that before the calculation of
CV, both rolling signals are normalized to the 0-1 range. They can be interpreted as the
measures of signal stationarity.

The VMS feature was originally deőned for 5-ms window [53] and, with the same widow
size, used in later publications, including the work by Kręcisz and Bączkowicz [5], which
originally analyzed signals used in the current work. However, to potentially gain more
insights into the informativeness of the vibroarthrogram’s variability, all rolling features will
be calculated for windows sizes of powers of two from 0 to 12 with a step of 0.53, yielding
windows sizes from 0.1 ms to 409.6 ms. Additionally, window size of 5 ms will be calculated,
as currently used in the literature.

The rolling features, with their respective deőnitions, were summarized in Table 5.5.

3Non-integer number of samples will be rounded up.



56 CHAPTER 5. SIGNAL ANALYSIS IN TIME DOMAIN

Table 5.5: Summary of the rolling features.

name deőnition remarks

Variance of the
Mean Squared

VMS = 1
n

∑n
i=1(x

MS(i)− µMS)2
xMS is the moving mean squared signal, and
µMS is its mean value.

Coefficient of
Variation of the
Normalized
Moving Average

CV NMA = σNMA

µNMA

σNMA is the standard deviation of the
normalized moving average signal, and µNMA

is its mean value.

Coefficient of
Variation of the
Normalized
Moving Variance

CV NMV = σNMV

µNMV

σNMV is the standard deviation of the
normalized moving variance signal, and
µNMV is its mean value.

5.3 Difference and frequency features

Strict frequency analysis, with explicit transformation of the signal into the frequency domain
will be discussed in the following chapter. Nevertheless, there are several features that
provide insights into the signal frequency, that can be directly extracted from the signal in
time domain. Those features are usually deőned using two concepts: applying the difference
operation to the signal, i.e., analyzing variations of its slope, or somehow counting signal
turns. It is important to clarify, however, that those are not direct measures of frequency
and while they can provide some general information about the rate of changes in a signal,
they do not differentiate between various frequency components in a complex signal.

Sum of the absolute differences of the signal, or, more intuitively, its "length" was used
in VAG domain by Al-Timemy [65]. In this work, however, it will be normalized by the
number of samples, providing information about the average value of the absolute slopes.
The feature will be called the Mean of Absolute Differences (MoAD). Since high values of
the MoAD indicate, on average, higher absolute slopes of the signal, this feature can be
interpreted as a variability measure. Note, however, that compared to the spread measures
described earlier (see Table 5.2), this feature incorporate information about the temporal
ordering of the samples.

Another features deőned using the difference are the Hjorth parameters [147]. They were
originally deőned in the electroencephalogram analysis domain and proved to be informative
also in the vibroarthrogram context [68]. The őrst feature, called the mobility is a ratio
of the standard deviation of the derivative signal, or the slope, to the standard deviation
of the raw signal. It can be interpreted as the average frequency measure of the signal.
The second feature, complexity, is the ratio of the mobility of the derivative of the signal
to the mobility of the signal itself. It measures average rate of change of the frequency.
Hjorth’s parameters were extensively used in the VAG literature, with slightly altered naming
convention. That is, Hjorth’s complexity in the VAG domain is usually called the Form
Factor [5,51,52,57,58,60,74,109]. Note, that in this work, the FF is deőned differently (see
Table 5.4).

Information about the variability, or the average frequency of the signal, could also be
extracted by counting the number of zero-crossings. The Zero Crossing Rate (ZCR) is a
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measure of the rate at which a signal changes its sign, i.e., goes from positive to negative
values or vice versa. To make it easily interpretable, the number of crossings is divided by
the length of a signal, providing direct information about the average rate of sign changes
in the signal per sample. This gives an insight into the dominant frequency components of
the signal. A feature similar to the ZCR is the Turns Count Rate (TCR). A "turn" in a
signal represents a local minimum or maximum. Therefore, the TCR is effectively measuring
how many signiőcant peaks occur in the signal. If the signal changes direction frequently, it
indicates a higher complexity or variability in the signal. Both features, however, could be
sensitive to noise, and therefore they are usually implemented with some threshold.

Both ZCR [65,73,98,100,121] and TCR [54,55,60,65] were used quite extensively in VAG
literature. For example, Al-Timemy [65] used the ZCR with additional threshold α. That
is, only values of magnitude greater than α were considered in the counting. Yet, speciőc
value of α was not provided. The ZCR was also used by Scherpereel et al. [121], however, the
thresholding was not mentioned in their work. Rangayyan and Wu [53], on the other hand,
used the TCR. They applied a threshold, that was dependent on the standard deviation of
the signal. That approach led to a quite counter-intuitive result: larger values of the ZCR
for the signals generated by the healthy knee. Because of that issue, in a later work, Wu and
Krishnan [55] used a threshold dependent on the range of the values. First, they normalized
signal to a zero to one range, and then applied a threshold of 0.2. Various approaches to
setting the threshold make its choice quite difficult. Values too small could make the feature
more noisy, and therefore less informative. Too high values, on the other hand, could make
the feature not sensitive enough to extract valuable information at all. Therefore, in this
work, both the std and the range approach will be used, with threshold levels α and β,
respectively. Speciőc levels will be set in a range from zero (i.e., no thresholding) to one,
with an increments of one percent. That will provide four feature vectors, namely ZCRα

and TCRα, normalized by the standard deviation, as well as ZCRβ and TCRβ, normalized
by the range. Since all threshold ranges are the same, each feature vector will have exactly
101 elements long.

Difference and frequency features calculated on signal in the time domain, with their
respective deőnitions, were summarized in Table 5.6.

5.4 Self-similarity features

Another category of features focuses on measuring self-similarity of a signal. There are two
main approaches used in this work: autocorrelation and fractality. The őrst approach in-
volves the calculation of various Autocorrelation Function features to quantify the degree
to which a signal repeats its structure over time. On the other hand, the second approach,
fractality, employs Multifractal Detrended Fluctuation Analysis as a robust tool for quan-
tifying the complex, scale-invariant properties of a signal. These two approaches, serving
complementary roles, offer a comprehensive perspective on the self-similarity of the signal.
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Table 5.6: Summary of the difference and frequency features.

name deőnition remarks

Mean of Absolute
Differences

MoAD = 1
n−1

∑n−1
i=1 |x(i+ 1)− x(i)|)

Mobility mobility = σx′

σx

σx denotes standard deviation of the
signal, and σx′ denotes standard deviation
of the derivative of the signal.

Complexity complexity = σx′′

σ′

x
/σx′

σx

σx′′ denotes standard deviation of the
double-derivative of the signal.

Zero Crossing Rate α
ZCRα = 1

n−1

∑n−1
i=1

I
(

x(i+ 1) · x(i) < −(α · σ)2
)

α is the threshold, I is the indicator
function, which equals to 1 if the
condition is true, and to 0 otherwise, and
σ is the standard deviation of the signal x.

Zero Crossing Rate β
ZCRβ = 1

n−1

∑n−1
i=1

I
(

x(i+ 1) · x(i) < −(β · (spread(x)))2
)

β is the threshold, and σ is the standard
deviation of the signal x.

Turns Count Rate α TCRα = 1
n−2

∑n−2
i=1 I

(

(x(i+ 2)− x(i+ 1)) · (x(i+ 1)− x(i)) < −(α · σ)2
)

Turns Count Rate β TCRβ = 1
n−2

∑n−2
i=1 I

(

(x(i+ 2)− x(i+ 1)) · (x(i+ 1)− x(i)) < −(β · (spread(x)))2
)

5.4.1 Autocorrelation function features

Autocorrelation is a concept used to determine the similarity of a signal to a delayed version
of itself over a discrete period of time. It can be very fruitful tool for characterization of
biomedical signals in general [10]. The Autocorrelation Function (ACF) is deőned as [148]:

ACF (k) =
1
n

∑n−k

i=1 (x(i)− µ) · (x(i+ k)− µ)

σ2
, (5.1)

where k is the lag, x is the n-sample signal, µ is the average value of this signal, and σ2

is its variance. Note, that the sum is calculated from the őrst to (n − k)-th sample, and
therefore values of the function for increasing k get calculated on progressively less samples,
making them progressively less reliable. Nevertheless, in this work, for the ACF related
features, function will be calculated for the biggest possible number of lags, i.e., from k = 1
to k = n− 1. A number of informative measures can be extracted from the ACF.

For example, the Average Autocorrelation Function (AACF) is the average value of the
function across all lags. Values of the AACF close to zero suggest that, on average, the signal
does not correlate much with delayed versions of itself, indicating that it is less structured
and resembles white noise. If the AACF is far from zero, it implies that there is a high degree
of autocorrelation overall, suggesting the presence of dominant frequency components or pe-
riodicities. Similar measure, i.e., the Rectiőed Average Autocorrelation Function (RAACF)
is deőned similarly, but on the absolute values of the ACF. Taking absolute value negates
the effect of canceling positive and negative correlations, focusing instead on the magnitude
of the ACF at each lag, regardless of its direction. It provides a measure of how strong the
magnitude of autocorrelation is on average. This information can be useful to distinguish
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oscillatory parts of signals, where the ACF ŕuctuates around zero. Similar information can
be extracted using the Mean Squared Autocorrelation Function (MSACF), which squares the
ACF values instead of taking their absolute value. It therefore puts an additional emphasis
on larger values.

Another very important ACF measure is the First Zero Crossing Time (FZCT). It is
the time delay, at which the ACF őrst intersects the zero line. In a pure sine wave, it can
indicate quarter of the period of the wave. At multiples of its period, the ACF will be
equal to one, while shifting the phase half the period will result in ACF equal to negative
one. At a quarter period, the sine wave is perfectly out of phase with a version of itself
that is shifted by that amount, leading to a zero crossing in the autocorrelation function. In
more complex signals, it can indicate shortest typical timescale over which signal’s properties
change signiőcantly. Lower values of the the FZCT might suggest rapid ŕuctuations in the
signal, while higher values indicate slower signal evolution. This will be further discussed in
the following section, devoted to the Phase Space Reconstruction. The the FZCT will be
deőned as the number of sample at which the ACF changes its sign divided by the number
of all samples in the signal.

Another measure is the number of times, that ACF crosses zero, i.e., the Autocorrelation
Function Zero Crossing Rate (ACFZCR). A zero-crossing in the ACF can be interpreted as
indicative of a change in the signal’s pattern. That is, when a zero-crossing occurs, it means
the signal transitions from a state of positive autocorrelation to negative autocorrelation
or vice versa. In other words, the signal at one point in time is either in phase or out of
phase with a future or past version of itself. The ACFZCR, therefore, provides information
about the dynamics of structural changes of the original signal. Speciőcally, it can reveal
the frequency at which these changes occur. It will be deőned as the actual number of
zero-crossings divided by the number of signal samples.

The Autocorrelation Function Turns Count Rate (ACFTCR) is a similar feature, but with
slightly different interpretation. Its deőnition is the same TCR, but without the threshold
and deőned on the ACF function. In complex signals, such as vibroarthrograms, the number
of turns might indicate the presence of multiple overlapping frequencies or non-stationary
components. A high number of turns could suggest a multi-component signal or a signal
with rapidly changing structure. Similarly to the number of zero-crossings, to obtain the
ACFTCR, the actual number turns count will be divided by the number of samples in the
signal.

Features deőned on the ACF, with their respective deőnitions, were summarized in Ta-
ble 5.7.

5.4.2 Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) is another measure of self-similarity, or memory,
in time series [149]. While the autocorrelation measures the degree of similarity between a
signal’s values at different time points, the DFA quantiőes how the overall structure of a
signal’s ŕuctuations is similar at different time scales. This is done by creating the integral
of the original signal (i.e., the cumulative sum), segmenting the obtained signal into non-
overlapping windows of various sizes, and removing a local trend in each window. Trend is
obtained using polynomial őtted to the signal in a window. After removing the trend, the
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Table 5.7: Summary of the ACF-based features.

name deőnition remarks

Average
Autocorrelation
Function

AACF = 1
n

∑n
i=1ACF (i)

ACF is the Autocorrelation Function of n
lags, calculated using Equation 5.1.

Rectiőed Average
Autocorrelation
Function

RAACF = 1
n

∑n
i=1 |ACF (i)|

Mean Squared
Autocorrelation
Function

MSACF = 1
n

∑n
i=1ACF (i)

2

First Zero Crossing
Time

FZCT =
1
n
mink {ACF (k) ·ACF (k + 1) < 0}

Autocorrelation
Function Zero
Crossing Rate

ACFZCR =
1

n−1

∑n−1
i=1 I (ACF (i+ 1) ·ACF (i) < 0)

I is the indicator function, which equals to 1
if the condition is true, and to 0 otherwise.

Autocorrelation
Function Turns Count
Rate

ACFTCR = 1
n−2

∑n−2
i=1 I ((ACF (i+ 2)−ACF (i+ 1)) · (ACF (i+ 1)−ACF (i)) < 0)

RMS value of each detrended window is calculated, providing a ŕuctuation measure. Aver-
aging ŕuctuations over all windows of the same size provides a value, which is a function
F (s) of the window size s. Speciőc windows size choice will be discussed later. The function
F (s) allows to obtain the Hurst exponent, H, which is a direct measure of self-similarity. It
is calculated as a slope of the line őtted to the logarithm of F (s) as a function of logarithm
of s. Values of the Hurst exponent smaller than 0.5 indicate anti-correlated structure of the
signal, while greater than 0.5, but smaller than 1.0 indicate correlated, long-range depen-
dent structure. Values greater than one suggest non-stationary signals, resembling random
walks [150]. The Hurst exponent was previously used in the VAG feature extraction by
Kręcisz and Bączkowicz [5], on the signal base the same as in this dissertation. Differences
in implementation between the [5] and this work will be discussed later. The DFA was
also used in the preprocessing steps in some other VAG-related studies, to determine which
sub-signals should be summed up after the decomposition [63,66,114].

Two parameters are of great importance in the Hurst exponent calculation: window sizes
and order of the polynomial used to obtained local trend. Too small window sizes could
result in overőtting of the polynomial to signal samples inside the window, while too big
would render the number of windows in the whole signal too small to obtain reliable average
ŕuctuation. Ihlen [150] suggests non-smaller window size than 10 and not greater than tenth
of the signal length. Therefore, since signals in this work have around 60 thousand samples,
window sizes of 16 to 4096 will be used, with consecutive powers of two. Polynomial order
have a direct inŕuence on the shape of removed local trend and therefore ŕuctuation calcu-
lation. Too large orders could result in overőtting of local trend, resulting in underestimate
of ŕuctuations. In smallest windows size of 10 to 20, Ihlen [150] suggest using polynomial
order not greater than 3. Therefore, two orders will be used, i.e., one, creating linear trend,
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and two, creating quadratic trend.
The DFA assumes that self-similarity of a signal is consistent across all amplitude scales

and therefore, it is sometimes called monofractal. On the other hand, multi fractal DFA
allows for varying scaling behavior, providing a more nuanced understanding of complex
signals that exhibit different degrees of self-similarity at different amplitude scales. The
ŕuctuation in each window of the DFA is calculated as the RMS of samples in that window:

F (s) =

√

√

√

√

1

ns

ns
∑

i=1

xs(i)2 =

(

1

ns

ns
∑

i=1

xs(i)
2

)
1

2

, (5.2)

where xs is ns-length window of the signal. Because of the squaring operation, the RMS
is inŕuenced much more by the greater values. Changing the squaring operation to other
orders q:

Fq(s) =

(

1

ns

ns
∑

i=1

(

xs(i)
2
)

q

2

)
1

q

, (5.3)

yields Multifractal DFA [150]. Parameter q equal to zero makes the deőnition of ŕuctuation
a geometric mean4. Order q smaller than zero make the ŕuctuation more sensitive to smaller
variation, since small values raised to negative power get larger. Positive q orders make
the ŕuctuation more sensitive to larger variations, with special case q = 2, which is used
in traditional DFA. Increasing magnitudes of the q make the Hurst exponent calculation
less precise, and Ihlen [150] considers range from negative to positive őve sufficient in most
biomedical signal analysis cases. Therefore, this range will be used in the current work, with
an increment of one.

Varying the q order allows for analysis of various multifractality measures [150]. The őrst
such measure used in this work is the mass exponent τq. It quantiőes the scaling behavior
of the moments of the probability distribution of a signal. The linearity or nonlinearity of
τq with respect to q provides an indication of whether the signal exhibits monofractal or
multifractal behavior, respectively. It is directly related to the generalized Hurst exponent
Hq through a simple relation [151]: τq = q ·Hq − 1, linking the long-term memory property,
captured by the Hurst exponent, with the scaling behavior of different moments of the data
distribution, captured by the mass exponent.

Another Multifractal DFA feature is the Singularity Exponent αq. It characterizes the
local regularity or irregularity of a signal. It is derived from the mass exponent τq, as its
őrst difference with respect to q. It indicates, therefore, how the mass exponent changes
with q, or how the scaling behavior of the signal changes. Positive q values prioritize larger
ŕuctuations, and high αq for positive q indicates rapid changes in these large ŕuctuations,
while a lower αq represents slower changes. On the other hand, negative q values focus on
smaller ŕuctuations. High αq for negative q indicates that these small ŕuctuations change
quickly, while a lower αq suggests more gradual changes. Besides speciőc values of αq at
various q, range of its values can also be extracted. This width of the multifractal spectrum
is a measure of the overall degree of multifractality in a signal. A wider and narrower spectra

4To avoid division by zero, special case of q = 0 is calculated as Fq=0(s) = e
1
2 ln(x2

si
) [150].
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indicate a higher or lower degree of multifractality, respectively. That is, signals with wider
spectra show a variety of scaling behaviors with a signiőcant amount of irregularities. On
the other hand, narrower spectra indicate signals with more uniform scaling behaviors and
fewer irregularities.

The last feature deőned on Multifractal DFA is the Singularity Dimension f(αq). It is de-
őned using singularity exponent, mass exponent and the moment q [151]: f(αq) = q · αq − τ(q).
The Singularity Dimension measures how often local irregularities occur in the signal. High
f(αq) indicates that singularities of strength αq are dense and occupy a large portion of the
signal, while low f(αq) indicates that such singularities are more sparse.

Table 5.8: Summary of the DFA-based features.

name deőnition remarks

Hurst Exponent H(q) = S (Fq(s), s)
S is a slope of a line őtted to the őrst argument with
respect to the second argument, Fq(s) is the q-th order
moment ŕuctuation, and s is the window size.

Mass Exponent τq = q ·H(q)− 1

Singularity Exponent αq = τq+1 − τq

Width of the
Multifractal Spectrum

width = max(α)−min(α)

Singularity Dimension f(αq) = q · αq − τ(q)

In summary, the Multifractal DFA analysis will result in 86 features: 11 Hurst Exponents,
11 Mass Exponents, 10 Singularity Exponents, 1 witdth of the spectrum and 10 Singularity
Dimensions, for q order from negative to positive őve with increment of 1. All those features
will be extracted for detrending with linear and quadratic trend. Summary of their deőnitions
was provided in Table 5.8.

5.5 Phase Space Reconstruction features

Another approach to signal analysis is the reconstruction of the phase space of the dynam-
ical system that produced the signal. Since it presents a multi-dimensional perspective on
the system’s dynamics, it has the potential to provide more comprehensive information, po-
tentially allowing extraction of more informative features. The process used to reconstruct
the phase space is known as signal embedding [152]. It is a simple transformation that
maps a univariate time series into a multivariate one, called the Reconstructed Phase Space
(RPS). Each dimension in this space corresponds to a time-delayed version of the original
signal [152]:

PSR = (x(i− (m− 1) τ), x(i− (m− 2) τ), . . . , x(i− τ), x(i)), (5.4)

where x is the signal, i is the sample number, m is embedding dimension and τ is the delay.
By employing a suitable delay and selecting an appropriate number of embedding dimensions,
a faithful representation of the underlying dynamical system can be created [152]. Choice of
the the delay time τ and number of dimensions m is not a trivial task, however. Figure 5.2
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shows exemplary reconstructed phase spaces using signal embedding method with various
time delays. The signal is the same as in previous examples.

Figure 5.2: Exemplary reconstructions of the phase space. For all examples, number of
dimensions (m) is equal to 2, while time delay (τ) varies. In all plots, x - and y-axes indicate
speciőc time samples and their delayed versions, respectively.

Time delay which is too short results in highly correlated dimension values, clustered
around the diagonal (see the őrst two rows in Figure 5.2). Too large values, on the other
hand, make the informative structures spread out excessively, rendering them obscured or
potentially lost within the phase space, thereby reducing the effectiveness of the embedding.
A popular rule-of-thumb to obtain the τ parameter is the őrst zero-crossing of the ACF [152].
This point is the őrst time when the delayed signal becomes uncorrelated with the original
signal, indicating that there is no signiőcant information shared between the original and the
delayed versions. This choice, therefore, allows for the reconstruction of the phase space that
potentially allows for the extraction of features providing new information. Another method,
also based on the ACF, assumes the optimal choice of the delay to be the sample, where the
ACF is equal to 1− 1

e
[153]. For the example from Figure 5.2, the őrst zero crossing in the

ACF is at the 1619-th sample, while τ obtained by the second method equals to 284. In the
results chapter, those methods will be indicated by the subscripts zc and e, respectively.

Embedding dimension, i.e., the m parameter, can be chosen using the False Nearest
Neighbors algorithm [152]. In the Figure 5.2, all phase spaces are reconstructed in two
dimensions. Note, that some "loops" of the trajectory can be spotted, when the trajectory
crosses itself. See, for example, lower-right part of plots for τ equal to 100, 200 and 300.
This is the result of a projection of higher dimensional space into only two dimensions.
Some points of those loops are "false neighbors" meaning that their proximity is a result of
the projection, and in higher-dimensional embedding, their distance would be signiőcantly
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different. The algorithm of False Nearest Neighbors consists of increasing the dimensionality
of embedding space as long, as the ratio of false nearest neighbors to true nearest neighbors
is close to zero.

The time delays τzc and τe, as well as the embedding dimensions mzc and me, will con-
stitute four őrst features deőned in the RPS. Note, that the τzc is a linear transformation
of the FZCT feature, and therefore informativeness of those two features will be exactly the
same.

5.5.1 Phase space complexity measures

The RPS is an extremely rich source of information, and there are various features measuring
its complexity. For example, the Largest Lyapunov Exponent (LLE) measures the average
divergence of points close to each other in the RPS [153]. Consider two proximate points in
this phase space, with distance between them being δ. They symbolize marginally different
initial states of the dynamical system. These points change their position over time, creating
two distinct trajectories in the phase space. The LLE measures the average speed of this
change in the distance between the two trajectories. In scenarios where the LLE is positive,
an exponential divergence of the trajectories over time is indicated, signaling the presence
of a chaotic system. Conversely, an LLE value of zero implies neither convergence nor diver-
gence of the trajectories, reŕective of a periodic system. A negative LLE value signiőes the
trajectories’ convergence, indicative of a stable, non-chaotic system. Therefore, it provides
information whether the system described by the RPS is chaotic, or, more speciőcally, how
chaotic it is [153].

Another complexity measure is the Correlation Dimension (CD) [154]. It quantiőes self-
similarity of a signal in the RPS. It is calculated using a correlation sum C(ϵ) for a given
distance ϵ. The correlation sum is the fraction of all possible pairs of points in the phase
space that are within a distance ϵ of each other. In a m-dimensional space, for relatively
small ϵ, C(ϵ) should be proportional to ϵm. In other words, the number of close pairs of
points should increase as the m-th power of ϵ. It is because in a m-dimensional space, the
volume of a hypersphere scales with the m-th power of its radius. To compute the CD, a
line is őtted to the log-log plot of the C(ϵ) as a function of ϵ. The slope of this line is a
value of the CD. However, for some systems, this plot may not be exactly linear, or its slope
may change for different ϵ. This is where the CD reveals the fractal nature of the dynamical
systems: if the CD is not an integer, it indicates that the system’s dynamics have a fractal
structure. Increasing values of the CD indicate higher complexity [154]. Features based on
the RPS, with their corresponding deőnitions were summarized in Table 5.9.

5.5.2 Recurrence plots

Recurrence plot is a visualization tool allowing easier identiőcation of patterns in the RPS [155].
To construct such plot, a matrix of distances between each point pair in the RPS is created.
Those distances can be arbitrary and in this work, a Chebychev (maxiumum) distance will
be used5. Then, a recurrence threshold r is applied, to create binary version of the distance

5This distance is assumed by an approximation method proposed by Webber et al. [156] and used in this
work.
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Table 5.9: Summary of the RPS-based features.

name deőnition remarks

Time delay (the
őrst method)

τzc = mink {ACFk ·ACFk+1 < 0}

Time delay (the
second method)

τe = mink
{(

ACFk − 1 + 1
e

)

≈ 0
}

Embedding
dimension

See text.

Largest
Lyapunov
Exponent

LLE = S (δ(i), i)

S is a slope of a line őtted to the őrst argument with
respect to the second argument, δ(i) is the average
distance between every pair of points after the i-th time
sample.

Correlation
Dimension

CD = S (log(C(ϵ)), log(ϵ)) C(ϵ) is a correlation sum, and ϵ is a distance.

matrix, with ones representing a recurrence (distance smaller than r). The Recurrence Plot
(RP) is a visualization of the binary matrix resulting from the applied threshold. Therefore,
each point in this plot represents a pair of time samples, at which the phase space trajectory
passes near the same location. In another words, it visualizes time samples at which the
system, which generated the RPS repeats its state.

Figure 5.3 includes both the distance matrices (left column) and the corresponding RPs
(right column) for a RPS of the same signal as in Figure 5.2. Both methods of delay
selection were plotted (τzc and τe, upper and lower rows, respectively), and for both methods,
embedding dimension of m = 4 was chosen using the False Nearest Neighbors algorithm.

Figure 5.3: Exemplary distance matrices (left) and corresponding Recurrence Plots (right).

Choice of the parameter r is not easy, and several rule-of-thumb methods for this choice
exist. In the current work, a 10% of the maximum distance will be used [157], as one of the
simplest methods. The maximum distance will also constitute a feature extracted from the
RPS.
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In the constructed RP a number of characteristic shapes can be spotted. Clusters of
points indicate speciőc regions in the phase space, in which system trajectory tends to remain.
Single points indicate states, which are rarely visited and white areas indicate spaces that
were not close enough to be considered recurrence. Diagonal lines indicate periods, where
the path of trajectory is similar to path previously followed. There is a number of speciőc
measures, that can be extracted from the RP, which are collectively called the Recurrence
Quantiőcation Analysis (RQA). Some of those feature were previously used in a number of
VAG-related studies [5, 37,43,96,158].

The simplest RQA measure is the Recurrence Rate (RR), deőned as a ratio of recurrent
points to all points. It measures the density of recurrent points in the RPS. A higher RR
indicates a higher likelihood of the system returning to previous states. Similar measure is
the Determinism (DET), deőned as the ratio of recurrent points forming a diagonal lines
to all recurrent points. It measures predictability of the RPS. Another measure based on
the the diagonal line quantiőcation is the Average Diagonal Line (ADL), which measures
the average duration of similar behaviors in a system. Higher values of the ADL indicate
longer periods of similar dynamics in a system, on average. Finally, the Laminarity (LAM)
is a ratio of recurrent points forming vertical lines to all recurrent points. It quantiőes the
duration the system spends in a single state. The key difference between DET, ADL and
LAM is that the DET measures the predictability of the system, ADL measures the duration
of similarity in the system’s behavior, while LAM measures the duration the system remains
in the same state.

Since the RP is constructed for the each pair of points in the RPS, the calculation of the
RQA measures is extremely computationally expensive for long signals. Therefore, instead
of exact measures, their approximations will be used, utilizing the approach of Webber
et al. [156]. This method can be used assuming that the distance used for the RQA is
the Chebychev (maxiumum) distance. Summary of the RQA-based features, with their
corresponding deőnitions, was provided in Table 5.10.

Table 5.10: Summary of the RQA-based features.

name deőnition remarks

Maximal Distance md = max(∆)
∆ is a matrix of distances between each point pair
in the RPS.

Recurrence Rate RR = 1
N2

∑N
i=1

∑n
j=1Ri,j R is the Recurrence Plot.

Determinism DET =
∑N

l=2 l·D(l)
∑

N
i=1

∑
N
j=1 Ri,j

D is the histogram of the diagonal lines’ lengths.

Average Diagonal Line ADL =
∑N

l=2 l·D(l)
∑

N
l=2 D(l)

Laminarity LAM =
∑N

l=2 l·V (l)
∑

N
i=1

∑
N
j=1 Ri,j

V is the histogram of the vertical lines’ lengths.

5.5.3 Entropy measures

Another approach to analyze signal in the delay embedding context is quantiőcation of similar
patterns. This can be measured by various entropy measures, such as the Approximate
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Entropy (ApEn) [159] and the Sample Entropy (SampEn) [160]. Those entropy measures
are qualitatively different than previously described Shannon Entropy estimators, since they
are inherently calculated for the temporally ordered signal, not just distribution of its values.
The main idea of both ApEn and SampEn is similar. It őrst involves counting the number
of similar sub-signals of a certain length in the signal. Similarity is determined based on
a predeőned tolerance level r. Next, this process is repeated, but this time for sub-signals
that are one sample longer. The őnal step is to compare the frequency of the shorter
sub-signals to the frequency of the longer sub-signals. If short patterns often repeat in
a longer context, it suggests a higher regularity and lower complexity of the signal [161].
Main differences between the ApEn and SampEn, and their implications, are clearly visible
comparing deőnitions of those measures.

The short sub-signals repetitions for the i-th sub-signal are usually called Bi and are
calculated as follows [161]:

Bm
i (r) =

1

N −m− 1

N−m
∑

j=1,j ̸=i

I (d(xm(j), xm(i)) < r) , (5.5)

where N is the length of the entire signal, m is the length of the sub-signal, I is the indicator
function that equals to one, when the condition is met and zero otherwise, d is the Chebyshev
distance function, xm is the m-samples long sub-signal and r is the similarity threshold.

Similarly, longer sub-signals repetitions for the i-th sub-signal are called Ai and are
obtained using the following equation [161]:

Am
i (r) =

1

N −m− 1

N−m
∑

j=1,j ̸=i

I (d(xm+1(j), xm+1(i)) < r) . (5.6)

Both ApEn6 and SampEn can be deőned using those values:

ApEn(m, r,N) ≈ − 1

N −m

N−m
∑

i=1

log

(

Am
i + 1

Bm
i + 1

)

(5.7)

SampEn(m, r,N) = − log

(

∑N−m

i=1 Am
i (r)

∑N−m

i=1 Bm
i (r)

)

(5.8)

The main difference between the ApEn and SampEn is that the fraction in the logarithms
calculated for the ApEn has plus one in both numerator and denominator. It means that
in both Equations 5.5 and 5.6, the sum is calculated for each j, including i-th value. In
other words, each sub-signal, in addition to being compared to each other sub-signal, is
compared also to itself. Such deőnition makes the Approximate Entropy biased toward
zero, i.e., it underestimates complexity of a signal [161]. This bias can be reduced with
increasing length of a signal, and dependence of the entropy value on the signal’s length
is another difference between ApEn and SampEn [161]. According to the work by Bajić

6Strict deőnition of the Approximate Entropy used in the original publication [159] is slightly different,
but the provided approximate deőnition allows easier comparison of the ApEn and SampEn [161].
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and Japundžić-Žigon [162], the ApEn produces more biased values, but with lower variance,
compared to the SampEn. For long signals, however, this bias is reduced and therefore the
ApEn could be a preferable choice. Therefore, both ApEn and SampEn will be used in this
work.

Both entropy measures are heavily dependent on their parameters: r and m. The r
parameter can be understood similarly to the r parameter in the RQA. However, within the
entropy estimation literature, it is usually additionally multiplied by the standard deviation
of the signal, which ensures that the r parameter is invariant to the signal scale. That is
r = 0.1 means similarity threshold equal to 0.1 ·σ with σ being the standard deviation. This
convention will also be followed in this work. In the foundational publication by Pincus [159],
he proposes r values to range from 0.1 to 0.2. Lu et al. [163], however, argued that utilization
of this range can lead to inaccurate results and one should rather use r value that maximizes
the Approximate Entropy measure. In the current study, the approach of maximum entropy
will be utilized, as well as the range of r values from 0 to 1 with the step size of 0.1. Also,
the r from this range that maximizes the entropy, will be used as a feature.

The optimal value of the m parameter is also not straightforward to obtain. Usual values
are m = 2 or m = 3 [161]. There is also a rule-of-thumb that the systems can be differentiated
using signals of length N = 10m . . . 30m [161]. While this is not a direct recommendation
for the optimal m value, it could potentially be used as a guideline. Since signals in this
work are 61440 samples long, according to this rule, the m should be between 3 and 5.
One could also obtain the m parameter using previously mentioned False Nearest Neighbors
algorithm [163] with τ parameter equal to one. All those options will be used and compared
in the remaining part of this work.

Both the ApEn and SampEn were previously used in VAG-related studies. Wu et al. [114]
used ApEn with m parameter equal to 4 and r equal to 0.2. It was obtained as a parameter
set with the lowest p-value of Wilcoxon rank-sum test. Gong et al. [41] used SampEn with
parameters m = 2 and r = 0.2. The same parameters were used in study by Nalband et
al. [158] to obtain both ApEn and SampEn. Moreover, Kręcisz and Bączkowicz [5] used
Mulsiscale Sample Entropy, i.e., the SampEn obtained for multiple time scale signals. Time
scale signal was deőned as a n-sample non-overlapping moving average, with n varying from
7 to 30. They used m = 2 and r = 0.15.

Table 5.11: Summary of the entropy-based features.

name deőnition remarks
Approximate Entropy See Equation 5.7.
Sample Entropy See Equation 5.8.
Distance Maximizing
the Entropy

rmax = {r|max(Ent(m, r))} Ent being either ApEn or SampEn.

Embedding Dimension See text.
Determined using False Nearest Neighbors
algorithm.

Summary of the entropy features was provided in Table 5.11.



Chapter 6

Signal analysis in frequency domain

Some general information about the signal’s periodicity can be extracted directly from the
time domain. For example, frequency-related features, such as MoAD, ZCR, TCR or some
ACF-based ones, provide some general insights about the rate of change of the signal’s
amplitude. However, these methods are difficult to interpret for more complex signals, i.e.,
signals with multiple frequency components. Signal analysis in the frequency domain, that is,
on the basis of spectral density, enables more direct analysis of speciőc frequency components
separately, rather than mixed, as the in time domain.

In the VAG domain, the frequency analysis is broadly used, usually consisting of feature
extraction from the estimated spectral density. Various spectral estimation methods were
used in VAG-related research, including the periodogram [116] or Welch’s method with var-
ious parameters [37,75]. In some studies, the frequency features were obtained directly from
the Discrete Fourier Transform (DFT) [101] or rolling DFT [5, 76, 77]. More in-depth de-
scription of the rolling frequency analysis approach will be included in the following chapter.

This chapter includes brief explanation of the Power Spectral Density estimation, followed
by the comparison of some of the selected estimation methods. The chosen method will be
used to obtain some frequency-related features. Most of those features can be thought of
as being parametric, with the parameters being lower and upper frequency of the band,
for which the features are being calculated. Therefore, the Frequency Range Map will be
introduced, as a tool to visualize and choose the most informative frequency band for each
feature.

Time domain features were obtained separately for three differently preprocessed versions
of the vibroarthrogram: the raw, the őltered and the derivative signal. Similar approach will
be used in the frequency analysis. Some features, speciőcally the ones describing the power,
will not be inŕuenced by the preprocessing much. Both őltering and differencing operations
have direct impact on the power distribution over the frequency of the signal. However, since
this impact is almost the same for each signal, the information content should not change
dramatically across the raw signal and the pass-band in the őltered signal. However, features
describing shape of the frequency distribution will be greatly affected by such operations.
Therefore, each feature will be obtained for all three methods of the signal preprocessing.

6.1 Power Spectral Density estimation

The Energy Spectral Density of deterministic signal provides information about the distri-
bution of power across the frequencies present in this signal [164]. However, real-world appli-
cations, such as vibroarthrography, often handle őnite-length signals that are best treated as
random sequences. Their random nature implies that the energy of speciőc frequency band
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cannot be directly determined, as in a deterministic signal. Therefore, the exact Energy
Spectral Density, possible to obtain for deterministic and inőnite-length signals, cannot be
directly computed for the random, őnite-length signals. As a consequence, the Power Spec-
tral Density (PSD) estimation is employed, which allows to analyze the average distribution
of power over frequencies within these őnite sequences [164].

To perform this estimation, multiple techniques can be used, some of which are based on
the DFT. The DFT provides a way to encapsulate the information embedded in the signal
into a series of sinusoids of different frequencies, each with its own magnitude and phase,
transforming the signal from the time domain to the frequency domain. It is deőned as
follows [164]:

X(k) =
N
∑

t=1

x(t)e−i 2π
N

·(t−1)k, k = 0, ..., N − 1, (6.1)

where X(k) is the k-th frequency bin of the complex DFT’s output, x(t) is the t-th sample
of a signal, and N is number of signal samples. The DFT can therefore be interpreted as a
degree to which the original signal x(t) can be represented by the certain sine wave, deőned
by the complex exponential sequence e−i 2π

N
·(t−1)k for a speciőed value of the frequency bin

k. Squared magnitude of this complex representation yields the PSD estimate called the
periodogram [164]. The periodogram of the exemplary vibroarthrogram showed in previous
chapters was included in Figure 6.1.

Figure 6.1: Periodogram of the exemplary vibroarthrogram.

The periodogram is an estimator which produces relatively high-variance PSD estimates.
See, in Figure 6.1, that the spectrum is relatively "spiky" and in some biomedical signal
analysis cases, an estimate with lower variance could be more useful [165]. There is a number
of methods used to obtain estimates of lower variance, with the most widely used being the
Welch’s method and the Multitaper method, both based on the periodogram [165].

The Welch’s method consists of őrst splitting the signal into N -sample, potentially over-
lapping segments. Then, a windows function is applied to each segment and a periodogram
of each segment is calculated. Finally, the obtained periodograms are averaged, yielding the
PSD estimate of less variance, compared to the traditional periodogram. Segments’ size is
of great importance, since it directly affect the frequency resolution of the obtained PSD.
Lower sizes provide PSD estimates of lower variance, but also lower resolution. On the other
hand, greater sizes provide smaller reduction of variance and greater frequency resolution.
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Figure 6.2 shows comparison of PSD estimates obtained using the Welch’s method, with
window size varying from 29 to 215 samples, resulting in the PSD estimate of about 20 Hz to
about 0.3 Hz resolution, respectively (the signal is sampled at 10 kHz). All estimates were
obtained using Hamming window with 50 percent overlap between segments.

Figure 6.2: Comparison of the Welch’s method to the periodogram.

Another method used to lower the variance of the periodogram PSD estimate is the
Multitaper method [165]. Instead of splitting signal into segments and averaging their PSD
estimates, the Multitaper method consists of obtaining the periodogram for multiple copies
of the whole signal. Each copy is őrst multiplied by a unique Slepian Taper, which is
a window function with optimal time-frequency concentration (windows across the signal
copies are orthogonal) [165]. Then, for each tapered copy, the periodogram is obtained.
Finally, periodograms of all the copies are averaged, yielding the Multitaper PSD estimate.
Number of such copies is the main characteristic of the estimate, and with increasing number
of copies, variance of the PSD decreases. Figure 6.3 shows comparison of PSD estimates
obtained using the Multitaper method with varying number of signal copies (n).

Figure 6.3: Comparison of the Multitaper method to the periodogram.

Choice of the parameters for both Welch’s method (window size) and the Multitaper
method (number of tapers) is not trivial, and in this work the following methodology was
implemented to decide which PSD estimation method should be used for the frequency
analysis. A comprehensive set of 22 VAG frequency feature sets was obtained for each of
eleven methods:
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• the raw periodogram,

• the Welch’s method with seven widow sizes: from 29 to 215, like in Figure 6.2,

• the Multitaper method with three numbers of tapers: 3, 7 and 15, like in Figure 6.3.

Each one of 1275 features in each one of 22 feature sets, obtained via each one of the 11
PSD estimation methods, was evaluated using the coefBMC coefficient1. Then, the best
results for each feature set were ranked across the methods, and the lowest average rank
indicated which PSD estimator is potentially the most informative in the analyzed context.
The speciőc feature sets were the Frequency Range Maps with 100 Hz resolution. They will
be described in the following section.

6.2 Frequency Range Maps

With the signal being explicitly represented in the frequency domain, features can be ex-
tracted directly from the PSD estimate. However, there is one more ambiguity regarding the
frequency analysis present in the VAG domain. It is the previously discussed range of the
informative frequencies (see Figure 3.3 in the literature review). In other words, given some
speciőc feature describing the spectrum, one could calculate it just for the speciőc frequency
range. For example, instead of calculating the frequency of maximum PSD value across the
whole PSD, one could be interested only in the frequency of maximum PSD in the frequency
range from 100 Hz to 150 Hz. One approach to resolving this ambiguity is őltering the signal
in the speciőed frequency range, as described in Chapter 4. However, this approach assumes
speciőc frequency range to be informative and other potential ranges are not considered.
For example, one of the preprocessing methods used in this work is a őltering in 50 Hz to
1000 Hz range. However, maybe more informative frequency content could be found in the
60 Hz to 990 Hz, or any other range.

Figure 6.4: Exemplary Frequency Range Map calculated for the average power feature, with
10 Hz resolution.

1The coefBMC is the feature informativeness measure used in this work. More detailed description was
provided in Section 8.1.
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To visualize informativeness of the whole spectrum summarized by some speciőc feature,
the FRM can be used, proposed by Łysiak et al. [116]. This map is essentially a three dimen-
sional plot, with x - and y-axis indicating lower (fL) and upper (fU) frequency, respectively,
and the color indicating informativeness ( coefBMC ) of the feature calculated on the PSD
in the fL–fU range. Exemplary FRM calculated for the average power feature (described in
more detail later), with 10 Hz resolution (frequency range step) was visualized in Figure 6.4.

See, that the FRM from Figure 6.4 seem continuous, that is, there are no sharp changes
in color. It is caused by the fact, that proximate points include mostly the same information.
For example, average power in range 110 Hz–1000 Hz is almost the same as the average power
in range 120 Hz˘1000 Hz. For features more sensitive to outliers (such as the maximum
value), this continuity will not necessarily hold.

6.3 Scalar features used to calculate FRMs

In this section, all features extracted from the speciőc frequency range of the estimated PSD
will be described. There is one important point, however, regarding values inside this range.
They can be calculated directly on the PSD estimate, indicated by Fn(k), or on the PSD
estimate normalized to sum up to one. Befrui et al. [75] argued that this normalization is
crucial, signiőcantly improving informativeness of the frequency content in the context of
power features. Such normalized spectrum will be indicated by Fr(f):

Fr(k) =
Fn(k)

∑N

k=1 Fn(k)
, (6.2)

where N is number of frequency bins in the estimated PSD. The letter r will also be indica-
tive of features calculated on such normalized PSD. This r stands for relative, indicating
that the feature is calculated on the part of the spectrum relative to the whole PSD. The
information content of such normalized PSD will be different than not-normalized PSD,
since spectra across signals will be normalized by different values. Some features will also be
calculated on spectrum normalized to one, but only inside the particular frequency range.
Such normalization will be indicated by Fs(k), with s standing for self-normalization:

Fs(k) =
Fn(k)

∑

B(fU )
k=B(fL)

Fn(k)
, (6.3)

where B is a mapping function, that maps frequency to the closest frequency bin, and fL
and fU are the lower and upper frequency ranges, respectively. Similarly to the relative
normalization (r), features obtained for the self-normalized spectrum Fs will be indicated
by the letter s. The self-normalization provides different information content than Fn and
Fr, since again, values inside the range are normalized differently across the signals.

The normalization procedures change the power density inside the selected frequency
range, but have no impact on the shape of the spectrum inside that range. Therefore, features
measuring the shape will be calculated on the non-normalized spectrum only. The őrst such
feature, and perhaps the most noticeable feature of the entire PSD, is the Frequency of the
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most prominent power (Fmax), which is around 0.9 Hz in the periodogram from Figure 6.1.
It was used in vibroarthrogram analysis in an early study by Kenohan et al. [128], as well as
in more recent ones, for example by Scherpereel et al. [121] or Shidore et al. [71]. In those
later studies, however, it was used in the rolling context, which will be described in more
detail in the following chapter. One could also extract value of the PSD for this speciőc
frequency, i.e., the maximum value in the considered frequency range. This peak value can
be calculated for all three normalization approaches, yielding three distinct features: Peak
Value (non-normalized) (PVn), Peak Value (relatively-normalized) (PVr), and Peak Value
(self-normalized) (PVs).

Treating the PSD estimate like a probability distribution, a number of distribution-based
features can be calculated. One of such features is the Median Frequency (MedF), i.e., the
frequency, above and below which, approximately half of the spectrum power is contained.
This feature was widely used in VAG-related research in earlier works, such as the study by
Zhang et al. [36], as well as more recent ones, such as the study by Kalo et al. [92]. Another
central tendency measure is the Spectral Centroid (µf ), which measures the barycenter of
the spectrum [166]. It was also used in vibroarthrography őeld, by Andersen et al. [37] and
Madeleine et al. [84].

The Spectral Spread (σf ) is deőned as the variance [121] or the standard deviation [73] of
values around the Spectral Centroid. In the current work, the standard deviation deőnition
will be used. Similarly to the Spectral Spread, Spectral Skewness (skewf ) and Spectral
Kurtosis (kurtf ) can be used, measuring the asymmetry and peakiness of the spectrum
around the Spectral Centroid [166]. Speciőc deőnitions of those features were included in
Table 6.1.

In all feature deőnitions used in this section, two mapping functions will be used: F(k)
is the function that maps frequency bin k to the frequency value at this bin, and B(f) is
the function that maps speciőc frequency value f to the closest frequency bin. Moreover,
since all FRM features are being calculated on the speciőc frequency range, fL and fU will
be used to indicate lower and upper frequencies of this range, respectively. For the sake of
clarity, they will be omitted in the left side of each deőnition. Finally, when the Fr, and Fs
will be used, it will be assumed, that they are also normalized for frequency rage from fL to
fU .

Probably the most widely used frequency features in the vibroarthrography őeld are
the power features, i.e., features deőned as the sums (or average values2) of the PSD for
a given frequency range. There are multiple ranges used across VAG literature, including
50 Hz–250 Hz and 250 Hz–450 Hz, called P1 and P2, respectively. Those ranges were
introduced by Bączkowicz and Kręcisz [123] and later used in multiple other studies [5, 35,
40,42,90,91,93,95,97,123]. In the original study analyzing signals used in this dissertation,
Kręcisz and Bączkowicz [5] used also power at the frequency of 470 Hz and 780 Hz, called,
respectively, F470 and F780. Reddy et al. [101] used average power in 100 Hz–500 Hz
range. Much lower frequencies, from 2 Hz to 10 Hz, were used by Faria et al. [102]. Multiple
frequency ranges were used by Tanaka and Hoshiyama [76, 77]. In both studies, they used
50 Hz wide frequency bands, from 50 Hz–99 Hz to 300 Hz–349 Hz. Similar approach of

2Since the average value is just a linear transformation of the sum, informativeness of the features deőned
as the sum and the average is identical.
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Table 6.1: Summary of the PSD distribution features.

name deőnition

Frequency of the most prominent power Fmax = F (maxk {Fn(k)})
Peak Value (non-normalized) PV n = Fn (B (Fmax))

Peak Value (relatively-normalized) PV r = Fr (B (Fmax))

Peak Value (self-normalized) PV s = Fs (B (Fmax))

Median Frequency fmedian = F

(

mink

{
∣

∣

∣

(

∑B(fU )
i=B(fL) Fs(i)

)

− 0.5
∣

∣

∣

})

Spectral Centroid µf =

∑B(fU )

k=B(fL)
F(k)·Fn(k)

∑B(fU )

k=B(fL)
Fn(k)

Spectral Spread σf =

√

∑B(fU )

k=B(fL)
(F(k)−µf )2·Fn(k)

∑B(fU )

k=B(fL)
Fn(k)

Spectral Skewness skewf =

∑B(fU )

i=B(fL)
(F(k)−µf )

3·Fn(k)

σ3
f
·
∑B(fU )

i=B(fL)
Fn(k)

Spectral Kurtosis kurtf =

∑B(fU )

i=B(fL)
(F(k)−µf )

4·Fn(k)

σ4
f
·
∑B(fU )

i=B(fL)
Fn(k)

multiple frequency ranges was used by Gharehbaghi et al. [100] and Richardson et al. [103].
In both studies, power spectrum of 29 logarithmically spaced ranges between 250 Hz and
10 kHz was used. Semiz et al. [98] used analogous strategy, for ranges between 250 Hz and
20 kHz. In all referenced studies, the frequency ranges were exclusive, i.e., they did not
overlap.

Befrui et al. took similar approach of multiple frequency ranges, but in their study,
the ranges were not exclusive. They extracted power from ranges deőned on frequencies
of 25 Hz, 50 Hz, 75 Hz, 100 Hz, 250 Hz, 500 Hz, 750 Hz and 1000 Hz. Similarly to the
Frequency Range Maps, they visually represented the whole spectrum. However, instead
of the speciőc informativeness coefficient describing speciőc feature (like the coefBMC , for
example), informativeness in their study was deőned as the Area Under the ROC Curve
(AUC) of the Support Vector Machine classiőer trained on two features: power in frequency
range fL to fU and in fU to 8 kHz, with fL and fU being frequencies from the mentioned
set.

Given all those different frequency ranges analyzed in the literature, the FRM approach
seem to be able to provide valuable insights that current state-of-the-art VAG-related studies
seem to lack. The power in this work will be calculated as the average value of the given fre-
quency range on the non-normalized and the relative-normalized PSD, since self-normalized
power would result in the same value for every signal (that is, one over the number of fre-
quency bins). Additionally, the geometric mean power will be calculated, indicating the
multiplicative central tendency of the PSD. It will potentially provide a more robust and
representative measure of the central power within a selected frequency band, especially in
ranges with substantial power variations. The geometric mean will be calculated for each
normalization. Finally, also for every normalization, the RMS value of the speciőc frequency
range will be calculated, indicating the "effective" power, taking into account the impact of
peaks in the PSD. All the frequency power features, with their respective deőnitions, were
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summarized in Table 6.2.

Table 6.2: Summary of the PSD power features.

name deőnition

Average Power (non-normalized) Pn = 1
N

·
∑B(fU )

k=B(fL) Fn(k)

Average Power (relatively-normalized) Pr = 1
N

·
∑B(fU )

k=B(fL) Fr(k)

Geometric Mean (non-normalized) Gn =
(

∏B(fU )
k=B(fL) Fn(k)

)
1
n

Geometric Mean (relatively-normalized) Gr =
(

∏B(fU )
k=B(fL) Fr(k)

)
1
n

Geometric Mean (self-normalized) Gs =
(

∏B(fU )
k=B(fL) Fs(k)

)
1
n

Root Mean Square (non-normalized) RMSn =
√

1
N

∑B(fU )
k=B(fL) Fn(k)

2

Root Mean Square (relatively-normalized) RMSr =
√

1
N

∑B(fU )
k=B(fL) Fr(k)

2

Root Mean Square (self-normalized) RMSs =
√

1
N

∑B(fU )
k=B(fL) Fs(k)

2

Using the power measures, more complex shape features can be deőned, such as the
Spectral Crest, deőned as the maximum value of a given range, divided by its average
value [166] or the Spectral Flatness, deőned as the geometric mean divided by the arithmetic
mean [166]. The Spectral Flatness, also known as the Wiener Entropy, was applied in the
VAG literature, in the preprocessing step. It served as a threshold to determine whether
further őltering was necessary for a sub-signal of the decomposition. Besides the Spectral
Crest and the Spectral Flatness, and similarly to the time-domain statistical features, the
Spectral Form Factor could be deőned, as a ratio of the RMS value to the arithmetic mean.
Note, that all those features describe the shape of the distribution and as such, normalization
does not affect their information content. Therefore, they could be calculated on the self-
normalized spectrum. And, since the summation and the average value contain the same
information, and the summarized self-normalized power is equal to one, all three features
could be deőned without denominator in their respective deőnitions. Therefore, in terms
of the information content, the Spectral Crest is equivalent to the Geometric Mean of the
self-normalized PSD (Gsf ), the Spectral Flatness is equivalent to the Peak Value of the
self-normalized PSD (PV sf ), and the Form Factor is equivalent to the RMS of the self-
normalized PSD (RMSsf ). Therefore, separate FRMs of the Spectral Crest, the Spectral
Flatness and the Spectral Form Factor will not be calculated.

Other features describing shape of the spectrum are the Spectral Slope (slopef ) and the
Spectral Decrease (decreasef ) [166]. They both measure how fast the spectrum decreases
for the higher frequencies. The slopef is deőned as the slope of the line őtted to the PSD.
In VAG-related research, it was used in the context of the Fractal Dimension estimation by
Rangayyan et al. [61] and Cai et al. [60]. On the other hand, decreasef measures how fast
the power spectrum of a signal decreases from the lowest frequency. The main difference
in interpretation of the slopef and decreasef is that the decreasef is a measure of how
the power spectrum drops off from the őrst frequency bin, while the slopef measures the
average decrease across the whole spectrum. In other words, the decreasef is more sensitive
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to changes in the lower frequencies, while the slopef gives a more global view of how power
changes with frequency.

The relative-normalized and the self-normalized PSDs can be treated as the Probability
Density Function. As such, it allows for the calculation of Shannon Entropy, measuring
how concentrated, or spread across the frequencies, the power is. The Spectral Entropy
(relatively-normalized) (Hr) indicates the distribution of the power relative to the entire
spectrum, while the Spectral Entropy (self-normalized) (Hs) measures distribution of the
power within that range only. The difference between them is that the Hr value for a
given frequency range is inŕuenced by the power content of the entire frequency spectrum,
providing a comparative measure, while the Hs value represents a standalone measure of how
the energy within the frequency range is distributed, not affected by power levels outside
of the range. Finally, there is another entropy measure deőned on the PSD, deőned in the
electroencephalography domain, called the Irregularity Index (II) [167]. Similarly to the Hr
it measures entropy of the speciőc range relative to the whole spectrum. However, it differs
in that in the deőnition of II, the entropy of the speciőc range is explicitly divided by the
entropy of the whole relative-normalized PSD. Speciőc deőnitions of the entropy measures,
as well as the slopef and the decreasef were provided in Table 6.3.

Table 6.3: Summary of the PSD shape features.

name deőnition remarks

Spectral Slope slopef =

∑B(fU )

k=B(fL)
(Fn(k)−Pnf )(F(k)−µf )

∑B(fU )

k=B(fL)
(F(k)−µf )2

Spectral Decrease decreasef =

∑B(fU )

k=B(fL)+1
Fn(k)−Fn(1)

k−1
∑B(fU )

k=B(fL)+1
Fn(k)

Spectral Entropy relative-normalized Hr = −
∑B(fU )

k=B(fL) Fr(k) · log(Fr(k))

Spectral Entropy self-normalized Hs = −
∑B(fU )

k=B(fL) Fs(k) · log(Fs(k))

Irregularity Index II =
Hrf+α·Hsf

Hf

Hf = −
∑N

k=1 Fr(k) · log(Fr(k)), and

α =
∑B(fU )

k=B(fL) Fr(k)

6.4 Other frequency features

In a couple of VAG-related publications, the frequency power ratio was used to describe the
signal. For example, Lee et al. [81] used a feature deőned as the power in 20 Hz to 100 Hz
divided by the power of 5 Hz to 500 Hz. Also, VAG signals registered in different context, i.e.,
for the temporomandibuar joint, are often described by the ratio of power below 300 Hz to to
power above 300 Hz [168]. It would be interesting to somehow visualize various ratios using
Frequency Range Maps. However, such visualization would require additional dimension(s).
Therefore, in this work, various ratios will be extracted, but for whole PSD only. That is,
for each frequency in the estimated PSD, a feature will be extracted deőned as the power
equal or below this frequency divided by the power above this frequency. For the sake of
completeness, additional feature will be deőned, as the reciprocal of the described ratio, i.e.,
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the power above the frequency divided by the power equal or below it.
Similar feature, also extracted for one-dimensional parameter, is the Spectral Generalized

Roll-off Point, similar in its deőnition to the percentile feature described in previous chapter.
The Spectral Roll-off Point feature is deőned as a frequency below which 95 percent of power
is contained [166]. It was used in a number of VAG-related studies, but in the rolling context,
described in more detail in the following chapter. Instead of taking this speciőc 95 percent
value, in this work, a number of such thresholds will be tested, from 0 percent to 100 percent,
with 1 percent step size.

Table 6.4: Summary of the frequency features not following the FRM methodology.

name deőnition remarks

Spectral Low-High Ratio LHR(f) =
∑B(f)

k=1 Fn(k)
∑

N
k=B(f)+1 Fn(k)

Spectral High-Low Ratio HLR(f) =
∑N

k=B(f)+1 Fn(k)
∑B(f)

k=1 Fn(k)

Spectral Generalized Roll-off Point SGRP (r) = F

(

mink

{
∣

∣

∣

(

∑k
i=1 Fs(i)

)

− r
∣

∣

∣

})

Both the frequency ratio features and the Generalized Spectral Roll-off Point, with their
respective deőnitions, were summarized in Table 6.4.



Chapter 7

Time-frequency analysis

Signal analysis in time domain allows to draw conclusions from temporal changes of some
speciőc value, like the acceleration. If this value changes periodically, analysis of the period,
or periods could be of great value. Extracting information about the periodicities directly
from the time domain, however, is difficult. In such cases, transforming the signal from
time to frequency domain allows much more straightforward analysis. Frequency analysis,
however, provides information about the speciőc frequencies that can be found somewhere in
the signal. That is, the PSD shows average frequency content over the entire duration of the
signal, i.e., without temporal localization. For example, a 10-second sinusoidal signal that
has frequency of 100 Hz for the őrst 5 seconds and a frequency of 200 Hz for the remaining
5 seconds, would yield the same PSD estimate as the signal that ŕuctuates between 100 Hz
and 200 Hz uniformly throughout its entire duration. Therefore, while the PSD provides
valuable insights into the frequency composition of a signal, it does not give any information
on how these frequencies change over time.

Time domain and frequency domain analyzes provide complementary information about
the signal. Combining those approaches, that is, not analyzing signal in those two domains
separately, but together, seems to be able to provide more comprehensive information. How-
ever, measuring changes of the frequency components in the time domain seems impossible,
or contradictory. Since frequency is the inverse of time, multiple time samples are required to
transform the signal into the frequency domain. That is, to draw any conclusions about the
frequency content, multiple time samples need to be analyzed simultaneously, thereby losing
temporal information. Thus, the frequency analysis cannot be conducted on one-sample time
resolution. However, measuring changes of the frequency components in time domain is not
necessarily contradictory. Rather, there is a tradeoff between resolution in one domain and
the second domain, called the Uncertainty Principle [169]. That is, the more time samples
are used to transform the signal, the more frequency bins will be possible to distinguish in
the frequency domain up to the Nyquist frequency, i.e., half of the sampling frequency.

7.1 The Spectrogram

The general idea behind time-frequency analysis used in this work is the same as with the
rolling features described in the Chapter 5. That is, to split a signal into multiple short sub-
signals and perform analysis on each sub-signal. Obtaining the periodogram of each sub-
signal and stacking the consecutive periodograms, yields the time-frequency distribution
called the spectrogram [169]. Extracting a frequency feature from each short-time PSD
estimation creates a time-varying Spectral Fluctuation Signal (SFS). Each such SFS is further
analyzed using some time domain methods described in Chapter 5, őnally providing scalar,
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time-frequency features. As in the separate time and frequency analyzes, time-frequency
analysis was conducted on all three preprocessed versions of the VAG signal.

There are three crucial parameters that need to be chosen for spectrogram calculation,
with the most important being length of the sub-signal, or the size of the window. As
mentioned, wider windows provide better resolution in frequency, while short windows allow
for more precise time localization. Another parameter is the overlap between windows.
Greater overlap provides more time samples, making the spectrogram more continuous in
time domain. Note, that greater overlap does not increase the time resolution related to the
uncertainty principle. Time samples are shared between windows, and therefore high overlap
increases continuity of the spectrogram, but information contained in the overlapped parts
of the signal is redundant. Finally, curve by which each sub-signal is multiplied, or shape
of the window, is of great value. It determines the balance between frequency resolution
and the spectral leakage. That is, it inŕuences how őnely distinct frequency components
can be resolved1, and how much spectral leakage appears. Spectral leakage is an artifact
where power in the estimated PSD spreads into frequencies that are not in the actual signal,
potentially masking or distorting the true spectral content [170].

In the VAG-related literature, various window sizes were used, varying from 2 ms [127]
to 500 ms [98], with overlap between windows varying from 20 percent [71] to over 97 per-
cent [115]. The most popular shape of the window used in vibroarthrography is the rectan-
gular window, however, other windows, such as Hamming [115], Tukey [69] and Hanning [5]
were also used. Table 7.1 includes a short summary of windowing approaches used in some
VAG-related studies. Alongside window shape, size and overlap between windows, the table
includes also the frequency resolution inside each window, resulting from window size and
sampling frequency2. It is worth noting that in all studies included in the table, rolling
approach to frequency analysis was utilized, but not necessarily the spectrogram approach.

Note, that not only the window size varies signiőcantly between studies, but also the
frequency resolution, rendering both parameters difficult to choose. Therefore, multiple
combinations will be compared in the current work, with the window size varying from
24 = 16 to 214 = 16384 samples, with consecutive powers of two. With the sampling
frequency of 10 kHz, time of each window will vary between 1.6 ms and 1638.4 ms, and the
frequency resolution will vary from 625 Hz to about 0.6 Hz, respectively. The overlap will
vary from 0 percent (no overlap) to 90 percent of the window size, with 10 percent step. For
percentages resulting with non-integer sample sizes, the overlap will be rounded down to the
nearest integer.

The window size used in the current work will be the Hamming window. It was chosen
over the Hanning, Rectangular, or Tukey windows also present in the VAG-related studies,
since it provides higher practical frequency resolution3 than the Hanning window, and sig-
niőcantly decreases spectral leakage compared to the Rectangular and Tukey windows [170].

Three exemplary spectrograms were included in Figure 7.1, with window sizes of 16,
512, and 16384 samples, using 90-percent overlap. All spectrograms were obtained for the

1Not in the sense of the uncertainty principle, but rather in a practical sense of distinguishing closely-
spaced frequencies.

2Frequency resolution is calculated as the sampling frequency divided by the window size.
3The ability to distinguish close frequencies resulting from the effects of the windowing process, not the

uncertainty principle.
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Table 7.1: A review of time-frequency analysis window sizes used in the VAG domain.

references window shape
window width overlap sampling

[kHz]
resolution

[Hz]samples time [ms] time [ms] percentage

[127] ns 100 2.0 1.8 90.0 50.0 500.0

[5] Hanning 150 15.0 10.0 66.7 10.0 66.7

[41] Rectangular 30 15.0 3.0 20.0 2.0 66.7

[71] Rectangular 60 30.0 20.0 66.7 2.0 33.3

[73] Rectangular 4000 40.0 36.0 90.0 100.0 25.0

[121] Rectangular 1250 50.0 25.0 50.0 25.0 20.0

[115] Hamming 512 51.2 50.0 97.7 10.0 19.5

[69] Tukey 128 64.0 ns ns 2.0 15.6

[100] Rectangular 20000 200.0 100.0 50.0 100.0 5.0

[72] Rectangular 8820 200.0 100.0 50.0 44.1 5.0

[103] Rectangular 20000 200.0 180.0 90.0 100.0 5.0

[99] Rectangular 40000 400.0 ns ns 100.0 2.5

[98] Rectangular 54000 500.0 250.0 50.0 108.0 2.0

Figure 7.1: Exemplary spectrograms with varying window sizes.

exemplary raw signal used in earlier examples. It is clear how window size inŕuences both
time and frequency resolution. See, that the spectrogram with the shortest window has the
lowest frequency resolution, with hardly any changes along the y-axis. On the other hand, the
one with the greatest window size has much better frequency resolution, but time resolution
is much worse. It is difficult to predict which resolution should be sacriőced to which, in
order to obtain the most informative features. It is also possible that different features could
beneőt, in terms of the informativeness, from different time-frequency tradeoffs.

7.2 Spectral Fluctuation Signals

In this work, the speciőc, scalar features are obtained from the spectrograms in two steps.
First, the spectrogram is reduced to some SFS using one of the speciőc frequency features
described in the previous chapter. That is, for each time sample, the corresponding PSD
estimate is reduced to some frequency feature, that creates time-varying SFS. Then, the SFS
is further reduced to speciőc scalar values using some time domain features described in the



82 CHAPTER 7. TIME-FREQUENCY ANALYSIS

Chapter 5. This process was visualized in the Figure 7.2, using 512-sample spectrogram from
the Figure 7.1.

Figure 7.2: Exemplary time-frequency feature extraction.

The frequency features described in the previous chapter were calculated for speciőc fre-
quency range. To reduce complexity of the analysis, however, time-frequency features will
be obtained for the full frequency range, i.e., from 0 Hz up to 5 kHz. As a result, self-
normalization and relative-normalization features will be the same. Therefore, features will
be calculated either without normalization, on the spectrogram SP (k, t) where k is the fre-
quency bin and t is the time sample, or on normalized spectrogram: SPr(k, t) = SP (k,t)∑n

k=1
SP (k,t)

.
Summary of the features used to obtain SFSs, with their respective deőnitions, was included
in Table 7.2.

Note, that there are two new features in Table 7.2, called the Spectral Flux. They are
deőned as the euclidean distance between consecutive samples of the spectrogram [171]. Both
Absolute and Relative Spectral Flux are used to quantify the changes in the PSD of a signal
from one time sample to the next. However, the normalization in the Relative Spectral Flux
makes it sensitive to the proportional changes in different frequency bins. The Absolute
Spectral Flux measures total change in power across the PSD, while the Relative Spectral
Flux measures changes in the relative distribution of power across the PSD, discarding
changes in total power.

7.3 Time analysis of the Spectral Fluctuation Signals

After obtaining all 21 time-varying SFSs, each one of them was summarized using 15 se-
lected time features described in Chapter 5. Those features included non-temporal statistics
measuring the central tendency, spread and shape of the distribution, as well as temporal
measures based on the analysis of the derivative of the SFS. Table 7.3 includes summary of
those features.

Only a subset of the features described in the Chapter 5 was extracted from each SFS,
and there are two reasons for such approach. First, the described time-frequency analysis is
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Table 7.2: Summary of the frequency features used for SFS calculation.

name deőnition

Frequency of the most prominent power Fmax(t) = F (maxk {SP (k, t)})
Peak Value (non-normalized) PV n(t) = SP (F (fmax(t)) , t)

Peak Value (relatively-normalized) PV r(t) = SPr (F (fmax(t)) , t)

Median Frequency
fmedian(t) =

F

(

mink

{∣

∣

∣

(

∑k
i=1 SP (i, t)

)

−
∑n

k=1 SP (k, t)
∣

∣

∣

})

Spectral Centroid µf (t) =
∑n

k=1 F(k)·SP (k,t)
∑

n
k=1 SP (k,t)

Spectral Spread σf (t) =
√∑

n
k=1(F(k)−µf (t))2·SP (k,t)

∑
n
k=1 SP (k,t)

Spectral Skewness skewf (t) =
∑n

i=1(F(k)−µf (t))
3·SP (k,t)

σf (t)3·
∑

n
i=1 SP (k,t)

Spectral Kurtosis kurtf (t) =
∑n

i=1(F(k)−µf (t))
4·Fn(k)

σf (t)4·
∑

n
i=1 SP (k,t)

Average Power (non-normalized) Pf (t) =
1
n
·∑n

k=1 SP (k, t)

Geometric Mean (non-normalized) Gnf (t) = (
∏n

k=1 SP (k, t))
1
n

Geometric Mean (relatively-normalized) Grf (t) = (
∏n

k=1 SPr(k, t))
1
n

Root Mean Square (non-normalized) RMSnf (t) =
√

1
n

∑n
k=1 SP (k, t)

2

Root Mean Square (relatively-normalized) RMSrf (t) =
√

1
n

∑n
k=1 SPr(k, t)

2

Spectral Crest crestf (t) =
PVf (t)
Pf (t)

Spectral Flatness flatnessf (t) =
Gf (t)
Pf (t)

Spectral Form Factor fff (t) =
RMSf (t)

Pf (t)

Spectral Slope slopef (t) =
∑n

k=1(SP (k,t)−Pf (t))(F(k)−µf (t))∑
n
k=1(F(k)−µf (t))2

Spectral Decrease decreasef (t) =
∑n

k=2
SP (k,t)−SP (1,t)

k−1∑
n
k=2 SP (k,t)

Spectral Entropy Hf (t) = −
∑n

k=1 SPr(k, t) · log(SPr(k, t))

Spectral Flux (non-normalized) SFn(t) =
√

∑n
k=1 (SP (k, t)− SP (k, t− 1))

2

Spectral Flux (relatively-normalized) SFr(t) =
√

∑n
k=1 (SPr(k, t)− SPr(k, t− 1))

2

already rather complex, including variation of window size and overlap in the spectrogram
calculation, as well as multiple PSD-based measures (or SFSs). Second, all SFSs, except
for the Spectral Slope, can take only positive values, rendering some time-domain features
useless. For example, the average value and the rectiőed average value, or the CV and the
MCV, would be equal and therefore redundant.
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Table 7.3: Summary of the time features extracted from each SFS.

name deőnition remarks

mean µ(SFS) = 1
n

∑n
i=1 x(i) x(i) is the i-th sample of the n-sample SFS.

median M(SFS) =
(SFS)(n

2 )+(SFS)(n
2 +1)

2 (SFS) is the sorted set of SFS’s values.

std σ(SFS) =
√

1
n

∑n
i=1(SFS(i)− µ(SFS))2

spread spread(SFS) = max(SFS)−min(SFS)
max and min denote maximum and
minimum value of the SFS.

skewness skew(SFS) =
1
n

∑n
i=1(SFS(i)−µ(SFS))3

s3

kurtosis kurt(SFS) =
1
n

∑n
i=1(SFS(i)−µ(SFS))4

s4
− 3

CV CV (SFS) = σ(SFS)
µ(SFS)

form factor FF (SFS) = RMS(SFS)
RAV (SFS)

crest factor CF (SFS) = max(SFS)
RMS(SFS)

impulse factor IF (SFS) = max(SFS)
RAV (SFS)

margin factor MF (SFS) = max(|SFS|)

( 1
n

∑
n
i=1

√
|SFS(i)|)2

MoAD MoAD(SFS) = 1
n−1

∑n−1
i=1 |SFS(i+ 1)− SFS(i)|

mobility mobility(SFS) = σ(SFS′)
σ(SFS)

σ(SFS) denotes standard deviation of the
SFS, and σ(SFS′) denotes standard
deviation of the derivative of the SFS.

complexity complexity(SFS) = σ(SFS′′)
σ(SFS′) /

σ(SFS′)
σ(SFS)

σ(SFS′′) denotes standard deviation of the
double-derivative of the SFS.

TCR TCR(SFS) = 1
n−2

∑n−2
i=1 I ((SFS(i+ 2)− SFS(i+ 1)) · (SFS(i+ 1)− SFS(i)) < 0)



Chapter 8

Dimensionality reduction and classifica-

tion

In previous chapters, speciőc features extracted from each VAG signal were introduced.
Some of those features, however, provide very similar, or even identical information. See,
for example, that the Frequency Range Maps are constructed by multiple features, that are
highly correlated, rendering the maps visibly "smooth", or continuous. In the classiőcation
context, such redundancy leads not only to increased computational complexity, but also
overőtting and worsened classiőcation performance in general [172]. Measuring the informa-
tiveness of the feature, however, is not a trivial task. Therefore, in the őrst section of this
chapter, the speciőc feature evaluation method will be described. The next section will be
devoted to the method of reducing dimensionality of the extracted features. In the second
section, speciőc classiőers will be described, that were used to classify reduced feature set.

8.1 Feature evaluation

Selecting proper features is a crucial step of any classiőcation problem. These features should
describe the object being classiőed as clearly as possible. However, evaluation of the feature
quality is a difficult task. In modern research that heavily relies on Big Data, the emphasis
on quantity often results in disregarding the importance of data quality [173]. Numerous
techniques are available for evaluation purposes [172], and are usually divided into three
categories: őlter, wrapper, and embedded methods [172]. Wrapper and embedded methods
use some additional models (such as classiőers or regressors) to evaluate feature in speciőc
context. Filter methods, on the other hand, evaluate feature quality independently of the
classiőcation algorithm, which is desirable for two major reasons. First, the classiőcation
algorithms are usually best suited for speciőc distribution of data. For example, the Support
Vector Machine is best suited for linearly separable data [174], while the k -Nearest Neighbors
classiőer can be used for nonlinearly separable data [142]. Usage of some őlter method
to evaluate quality of the feature ensures that speciőc characteristics of the classiőcation
algorithm do not inŕuence evaluation of the feature’s quality. Second, since they do not use
additional models, őlter methods are usually much less computationally expensive [172].

In an earlier study by the author of this work and his supervisor [133], some of the most
popular feature evaluation methods were compared in the context of classiőcation. The
comparison was conducted as follows. Every method evaluated features from some feature
sets. The best feature subset from each feature set was chosen and then used to train
a set of classiőers. Results of this classiőcation were used as a quality measures of each
evaluation method. This comparison was conducted, besides others, on the sets of features
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extracted from VAG signals analyzed in this work. Results indicated, that in the context of
classiőcation, the most useful measure proved to be the Battacharyya coefficient. It led to
the most accurate classiőcation of the VAG signals, and as such, will be used in the rest of
this work.

The Bhattacharyya coefficient, or the coefB , is a measure based on the probability density
function with wide usage across the literature [175,176]. Intuitively, the coefB measures the
overlap between distributions of values between two classes, and is deőned as follows:

coefB =
∑

x∈X

√

P1(x) · P2(x), (8.1)

where P1 and P2 and distributions of features within two classes in the feature values domain,
X1. Visualization of this concept was provided in Figure 8.1.

Figure 8.1: Visualization of the coefB .

The coefB varies between 0, for the "perfect" feature, i.e., feature which values do not
overlap between classes, to 1, for the feature which values overlap between classes completely.

Since in this work multiple classes are considered, a multi-class version of the coefB will
be used, called coefBMC . It is simply deőned as the average of coefB across the pairs of
classes, weighted by their prevalence:

coefBMC =
1
(

k

2

)

k−1
∑

i=1

k
∑

j=i+1

w(i) · w(j) · coefB(Pi, Pj), (8.2)

where k is the number of all classes,
(

k

2

)

is the number of all class pair combinations, P
is the Probability Distribution Function of feature values within a class, and w is a class
weight proportional to its prevalence. This coefficient also ranges from 0 to 1 with smaller
values indicating less overlap between the classes and larger values indicating higher overlap.
Note, that coefBMC only provides information about separation of some classes, without
information about which classes are separated and to what extent.

1Since explicit distributions of features are not know, they are estimated using the Kernel Density Esti-
mation, as described in more detail in [133].
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8.2 Dimensionality reduction

The current section will be divided into three subsections. In the őrst one, a summary of all
extracted features will be provided, as well as the general description of the two-stage dimen-
sionality reduction process. Two following subsections will be devoted to the description of
the speciőc approaches took in order to minimize the dimensionality, namely the Maximum
Relevance Minimum Redundancy algorithm and Principal Component Analysis.

8.2.1 Summary of all extracted features and general dimensionality

reduction approach

Features extracted in this work were broadly divided into three categories: time, frequency
and time-frequency. All features were extracted for three preprocessing methods, i.e., the
raw, the őltered, and the derivative signal. Time domain analysis yielded 3142 features per
preprocessing. Frequency analysis resulted in 22 FRMs, 125 250 features each, and 16 485
features not following FRM approach. Time-frequency analysis allowed for extraction of
34 650 features. Therefore, 2 809 777 features were extracted for each preprocessing, summing
up to the total of 8 429 331 features. Overwhelming majority of those features, however, is
highly redundant. Remember, for example, mentioned continuity of most FRMs. It is a
result of highly redundant information contained in proximate points on the map.

Reducing dimensionality of such number of features at once would be quite computa-
tionally expensive. In order to reduce computational cost, dimensionality reduction was
conducted in two stages. In the őrst stage, features after each preprocessing were divided
into 25 groups: time-domain features, 22 FRMs, other frequency-domain features and time-
frequency features. In summary, counting all preprocessing methods, 75 groups were created.
Best feature subset in each group was then reduced using Maximum Relevance Minimum
Redundancy (MRMR) algorithm. That ensured easy interpretation of the obtained feature
subset. In the second stage, all the subsets from the previous stage were combined and their
dimensionality was further reduced using two approaches: again, the MRMR algorithm or
the Principal Component Analysis (PCA).

This approach was visualized in Figure 8.2.

8.2.2 The Maximum Relevance Minimum Redundancy algorithm

The Maximum Relevance Minimum Redundancy [177] is a feature selection algorithm, that
iteratively sorts features based on their informativeness (relevancy) in the analyzed context,
while also ensuring that they are consecutively the least possibly redundant. It works as
follows [178]:

1. initialize empty feature subset,
2. calculate relevance of every feature with respect to the classes,
3. add the most relevant feature to the subset,
4. for each remaining feature, calculate redundancy with the features in the chosen subset,
5. calculate the MRMR score of each remaining feature by subtracting its redundancy

score from the relevance score (see Equation 8.3),
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Figure 8.2: Visualization of the two-stage dimensionality reduction approach employed in
this work.

6. add feature with the biggest score to the feature subset,
7. repeat steps 4-6 until the desired number of features is selected.

Because the relevance should increase for better (more relevant) features, in this study, the
relevance was deőned as the coefBMC subtracted from one. As for the redundancy, as
in [178], it was calculated as the average value of the absolute Pearson’s correlation between
the features inside the subset and one of the remaining features. Therefore, the MRMR score
was calculated as follows:

score(f) = 1− coefBMC(f)−
1

k

k
∑

i=1

|ρ(f, fi)|, (8.3)

where f is a feature remaining in the original chosen subset, k is a number of features in a
chosen subset and ρ is Pearson’s correlation coefficient.

One remaining factor is the number of features in the chosen subset (point 7 in the
list above). There are couple of approaches to chose this number, and perhaps the most
straightforward one is the elbow method [179]. When the MRMR scores are plotted against
the number of selected features, such as in the Figure 8.3, a characteristic shape emerges,
resembling an elbow. Features on the left-side of this elbow are considered relatively infor-
mative, while features after it represent diminishing returns.

Note, that while this plot generally decreases with consecutive features, it locally may
increase. It can happen when a feature is highly informative, yet more redundant compared
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Figure 8.3: Visualization of the exemplary MRMR score for consecutively selected features.
Green line indicates the elbow point.

to the previously selected features. Therefore, the elbow point might change after some
iterations. In this study, the number of features to keep was based on the elbow point, that
did not change for twenty consecutive iterations. The elbow point itself was found by őtting
separate linear trends before and after each point of the curve and identifying the location
where the difference between the two trends was greatest [179].

8.2.3 The Principal Component Analysis method

The Principal Component Analysis algorithm is another widely used tool for the dimension-
ality reduction task [180]. In contrast to the MRMR, instead of selecting the features, it
transforms them to create a set of new, uncorrelated features that are linear transformations
of the original features. It works as follows.

1. The original features are standardized, to ensure comparable inŕuence of them on the
new features.

2. The covariance matrix of the standardized features is calculated.
3. The eigenvalues and eigenvectors of the covariance matrix are calculated, representing

the magnitude of variance and the directions of the principal components, respectively.
4. The eigenvectors are sorted in descending order based on their corresponding eigenval-

ues. This order represents the amount of variance each principal component captures,
with the őrst being the most signiőcant.

5. A desired number of top eigenvectors (principal components) are chosen to reduce
dimensionality, based on the cumulative variance they capture.

6. The standardized feature matrix is then projected onto the selected principal compo-
nents to transform it into the lower-dimensional space.

7. The result is a feature matrix with reduced dimensionality, where each new feature is a
linear combination of the original standardized features, weighted by the eigenvector’s
coefficients.

A disadvantage of using the PCA dimensionality reduction is poor interpretability of
the reduced feature matrix. Since each new feature is a linear combination of all original
features, it is difficult to interpret speciőc values of the new features.

One additional concern while using the PCA for the dimensionality reduction is that it
does not utilize any information about the relevance of the feature in a speciőc classiőcation
context. It creates new features, that capture the most variability of the original features
matrix. However, not all variability in this matrix is necessarily informative in the context
of classiőcation. If the original feature matrix contains variability not related to the clas-
siőed groups, the PCA might prioritize that, creating new features that capture the most
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variability, while actually reducing informativeness understood in the classiőcation context.

8.3 Classiőcation algorithms

In the őrst dimensionality reduction step, an elbow method was used to determine number
of features selected from each feature set. After the second step, i.e., after combining all the
features from all selected subsets, and sorting them in order of importance, they could be
already used for classiőcation. Therefore, instead of selecting speciőc number of features and
then using this speciőc number of selected features to train a classiőer, multiple classiőers
were trained, with increasing number of features. This number varied from one feature to
183, chosen to be one smaller than the number of samples.

In order to reduce the potential impact of a speciőc classiőer on the distribution of
the selected features, a total of eleven distinct classiőcation algorithms were trained: the
Linear Discriminant Analysis (LDA), the naive Bayes, two k-Nearest Neighbors (KNN),
two decision trees, two decision forests, two Support Vector Machine (SVM)s, and a neural
network classiőer. They will be brieŕy described below.

The Linear Discriminant Analysis [181] works by őnding a linear combination of features
that maximizes the difference between means of classes, while minimizing the variance within
each class, based on assumptions of equal class covariances and normally distributed features.
Since it is based on maximizing distance between means of classes, it can be sensitive to
outliers.

The Naive Bayes Classiőer [182] assumes independence of features. It computes the
probability of speciőc class based on the product of individual features’ probabilities of
belonging to that class.

The k-Nearest Neighbors classiőer [142] works by comparing samples that are being
classiőed to already classiőed ones. First, the distances of the classiőed sample to the training
samples are being calculated. In this work, the euclidean distance is used. Then, k closest
samples are chosen. The sample is classiőed to the class, that majority of k-nearest neighbors
belong to. For small k, the classiőer can model more ŕexible decision boundaries and local
patterns in the features’ values. However, it also becomes more sensitive to outliers and
noise. On the other hand, greater k leads to more robust and generalized classiőcation, but
also lower sensitivity to local patterns. In this work, k values equal to 5 and 20 were used.
Those values were chosen based on the principle that k should be smaller than the size of the
least populated class to avoid potential bias towards more dominant classes, and to ensure
that even the minority class can have a fair representation in the decision-making process.
While the KNN with k equal to 5 aims to capture local patterns in the features, k equal to
20 provides more generalized classiőcation.

Decision tree algorithms [183] create hierarchical classiőers by consecutively splitting the
feature values, with each split being determined by the most informative feature. Greater
number of splits allows more complex decision boundaries, but also increases the risk of over-
őtting. In this work, 5 and 10 splits were used. With a small number of highly informative
features, decision trees perform well. However, with increasing number of features, espe-
cially of low informativeness, risk of overőtting increases. Decision trees can be considered
robust against outliers, since they partition the features’ values based on hierarchical splits,
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rather than on their distribution, ensuring that small number of extreme values have limited
inŕuence on the general structure of the tree.

Random forest classiőers are ensemble methods. That is, they are based on multiple
decision trees that are trained separately, and then their separate classiőcations are some-
how aggregated. In this work, two approaches were used. First, bagging approach, trains
multiple classiőers separately (64 in this work), on bootstrapped samples. That is, training
samples as randomly drawn (with replacement) from the training data. The classiőcation is
done separately on each tree, and the sample is classiőed to the class, that was chosen by the
majority of trees. The second random forest approach used in this work is RUSboost [184].
Boosting, in general, also consists of training multiple trees, however, not in parallel. Instead,
subsequent trees are trained to correct the errors of their predecessors. RUSboost algorithm
puts additional focus on class imbalance. In datasets where the numbers of samples in
each class signiőcantly differ, the algorithm adjusts the weights of misclassiőed instances
and performs random under-sampling of the classes with more instances, ensuring better
representation of class with fewer instances. In this work, the difference between number of
samples in the most and the least numerous classes is not great (see Table 2.1). However, us-
ing RUSBoost could potentially ensure more balanced consideration of all classes, improving
the generalization capabilities of the classiőer.

The Support Vector Machine [174] is a linear classiőer that őnds an optimal hyperplane
separating classes, while maximizing the distance between the hyperplane and the nearest
point from either class. The Gaussian SVM őrst transforms the feature values into a higher-
dimensional space, enabling a linear separation in the transformed space. The SVM is
inherently a binary classiőer. In this work, classiőcation of multiple classes is done with the
one-vs-one approach. That is, separate SVM is trained for each class pair. In the actual
classiőcation, voting approach is used: the őnal classiőcation result is the class which was
chosen by the majority of classiőers.

The Neural Network (NN) classiőer’s design is slightly more complex, but enables mod-
eling of nonlinear dependencies between the features’ values and classes [182]. It consists of
multiple layers of neurons, all of which have multiple inputs and one output. Output of each
neuron serves as an input to all neurons in the next layer, and is calculated as a weighted
sums of its inputs transformed by the activation function. The őrst layer consists of the
features’ values, and the last layer contains one neuron for each class. Number of layers
between those two, the number of neurons within them, as well as the activation functions
of those neurons are the most important NN parameters. More complex networks, i.e., with
more layers and neurons are able to model more intricate patterns, but require more training
samples and increase the risk of overőtting. In this work, the middle layer was designed to
have 10 neurons (one neuron for possible class pair) with Rectiőed Linear Unit activation
function.

In order to prevent any classiőcation model from overőtting, i.e., loosing its ability to
generalize, the dataset is usually partitioned into training and testing subsets [185]. The
testing subset, which the classiőer did not use during training, is then used to determine
the őnal classiőcation accuracy. That ensures that new data will be classiőed with similar
accuracy. The accuracy of the model is dependent on the division of the original dataset,
with a greater impact when a smaller number of data points is available. To address any
potential biases resulting from this fact, the dataset is typically split multiple times with a
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separate training of the classiőer for each split. The classiőcation accuracy is then reported
as the average accuracy across the splits. This approach is called cross-validation [185]. This
study utilized the leave-one-out cross-validation, which involved training the model on all
data points but one, on which the model was tested. The accuracy was an average from n
models, where n was the number of signals in a signal base (i.e., 184).

Each classiőcation model has its strengths and weaknesses in the context of different
feature distributions. Multiple various features were extracted in this work. Analysis of
speciőc characteristics of each one, and their various combinations would be unfeasible.
Therefore, employing diverse set of classiőcation algorithms enabled to utilize varied feature
characteristics, increasing the likelihood of achieving high classiőcation accuracy.

In summary, eleven classiőcation algorithms were trained on increasing number of features
sorted by the MRMR algorithm, as well as the PCA. Accuracy of each classiőer was calcu-
lated as the average classiőcation of 184 classiőers trained in leave-one-out cross-validation
approach.
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Chapter 9

Preprocessing

In the current chapter, results of the preprocessing methods comparison will be provided
and discussed, in the context of normality and stationarity. Then, a short summary will be
provided, including limitations of the chosen methods, as well as the conclusions.

9.1 Comparison of the preprocessing methods

For the visualization of the distributions, all signals in each knee joint condition classes were
concatenated. Figure 9.1 shows QQ plots and histograms of the concatenated signals for
the raw signal, Butterworth őltered signal and the derivative signal. In the QQ plots, the
dots correspond to the signal quantiles, while the solid black line represents corresponding
quantiles of the normal distribution. Note, that histograms were normalized to sum up
to one, creating estimation of the probability density function. The probability density
function of the normal distribution with the mean and standard deviation equal to those of
corresponding signals, was plotted with solid black line.

Values of kurtosis and skewness for each signal and each preprocessing method were
visualized using boxplots in the Figure 9.2. Note logarithmic y-scale in both plots1.

The QQ plots of any preprocessing method does not seem to resemble normal distribution.
The raw signal seem to be closest, however, its values seem to deviate from the line at about
negative and positive one. Also, a saturation on positive and negative őve is very pronounced.
This is also conőrmed by the histogram. Moreover, one can notice the right skewness and
heavy tails of the raw signal values compared to the normal distribution. See also negative
skewness and positive kurtosis in Figure 9.2. This right skewness can also be seen in the
exemplary signal from Figure 4.3, where negative parts of the peaks seem to be of smaller
magnitude than the positive ones. The average value close to zero, however, does not seem
to reŕect this phenomenon, because of some counterbalancing effect from negative values.
Notice two peaks at the extremes of the histogram. Values of negative and positive őve
correspond to the maximal value of the measurement setup and probably indicate analog
to digital converter saturation. For the future studies, this might suggest registering the
vibroarthrogram using greater voltage ranges or using smaller gain. What is interesting,
however, is the fact that the negative extremes seem to be more pronounced, pulling the
mean value close to zero.

The QQ plots of both őltering methods seem similar in shape, both having much more
extreme values than the normal distribution. Histograms, however, indicate more extreme

1Logarithmic scale of the skewness plot was obtained using transformation proposed by Webber [186],
using C constant of zero.
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Figure 9.1: QQ plots (left column) and histograms (right column) for the raw (upper row),
Butterworth őltered (middle row) and derivative (lower row) signals.

Figure 9.2: Boxplots of kurtosis (left) and skewness (right) of signal values after each pre-
processing.

values in the derivative signals, which is also conőrmed by the boxplots from Figure 9.2Ðno-
tice median kurtosis in the derivative signals being almost ten times higher. Notice also much
bigger spread of skewness values across derivative signals compared to both őltered and raw
signals. That could indicate less "stable" preprocessing, leading to less consistent signals.
Those boxplots were composed of signals from all the knee joint condition classes, though,



96 CHAPTER 9. PREPROCESSING

and high spread could be caused by differences of skewness between those conditions. This
issue will be further investigated in the following chapter.

Stationarity of the signals was quantiőed using CVNMA and CVNMV values. Exem-
plary normalized signals of moving statistics for each preprocessing method were plotted in
Figure 9.3. The moving average signals seem quite different across the compared methods,

Figure 9.3: Exemplary normalized moving average value (left column) and variance (right
column) for the raw (upper row), Butterworth őltered (middle row) and derivative (lower
row) signals. This example uses the same signal as the example from Figure 4.3.

with highly lowered variability in both preprocessed signals, compared to the raw signal.
Note, that the moving average is effectively a low-pass őlter. Interestingly, the derivative
signal seem to contradict the intuition and contain more low-frequency oscillations compared
to the Butterworth őltered signal. This can be attributed to the normalization. According
to the exemplary signals in Figure 4.3, majority of peaks in the derivative signal are really
high-frequency, or short-duration. Moreover, they seem to occur rather singularly than in
clusters, compared to the Butterworth őltered signal. Therefore, in the derivative signal, in
which the peaks are more surrounded by the low-amplitude components, each peak has more
relative inŕuence on the samples in the window, making the low-frequency oscillations more
visible. In the Butterworth őltered signal, on the other hand, the peaks are more clustered
and therefore their inŕuence on the window’s samples is much less pronounced.

Variability of both moving averages seem similar, though driven by different factors. In
the Butterworth őltered signal, there seem to be more clusters of high variance, separated
by relatively quiet fragments, while in the derivative signal, the variance seem to by more or
less pronounced, but everlasting.

The moving variance, on the other hand, seem to be very similar in shape across the
signals. It seems to have the highest amplitude in the derivative signal, which could be
explained by previously mentioned singular occurrences of peaks. Even though the plot in
Figure 9.3 is just an example, it seem to be representative. Boxplots for both CVNMA and
CVNMV coefficients, based on all the signals, were plotted in Figure 9.4. The CVNMA
coefficient is signiőcantly smaller after both processing, while CVNMV seem to be highest
in the derivative signal and lowest in the raw signal.
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Figure 9.4: Boxplots of the CVNMA (left) and CVNMV (right) coefficients for each prepro-
cessing method.

9.2 Summary

9.2.1 Preprocessing methods limitations

Even though differentiation is not frequency-selective, both Butterworth őltering and differ-
entiation can be interpreted as being focused on the frequency components of the vibroarthro-
gram and treating all signal samples the same. Another approaches, like decompositions,
could potentially also be of great value, as indicated in the literature.

Since this dissertation focuses on the feature extraction, the preprocessing step in the
signal classiőcation pipeline was chosen to be extremely intuitive and interpretable, even at
the cost of potentially lower performance. As listed in the Chapter 3, there is a plethora o
preprocessing methods, all having their own advantages and disadvantages. In the future
studies, an additional, more comprehensive comparison between various methods could be
conducted, perhaps indicating another preprocessing method as more suitable for the task.

9.2.2 Summary and conclusions

As mentioned earlier, vibroarthrograms are by nature non-stationary. However, in terms
of the moving average variability, or the CVNMA coefficient, both Butterworth őltering
and differencing seem to improve their stationarity. Relative variance, on the other hand,
quantiőed by the CVNMV coefficient, seem to increase after the preprocessing. Inŕuence of
those characteristics on speciőc features will be discussed in corresponding chapters.

Various frequency ranges seem to be dominated by the signal after each preprocessing.
The lowest frequency values are the most pronounced in the raw signal, while the middle part
of the spectrum seem to be occupied by the Butterworth őltered signal, as per its design.
The highest frequencies were ampliőed by the differencing operation, and therefore clearly
stand out in its spectrum.



Chapter 10

Time domain features

In this chapter, results of time-domain features will be presented. Informativeness of all
features will be provided and discussed. For features of relatively high informativeness, a
deeper analysis will be conducted, including visualization in form of boxplots, as well as
additional informativeness in terms of coefB , i.e., in the class-pair-wise context. First,
speciőc features in each type (i.e., statistical, rolling, etc.) will be analyzed. Then, their
correlations will be discussed. The chapter will end with a summary and conclusions, which
can be drawn from the conducted research.

10.1 Statistical features

Figure 10.1 includes results of the central tendency measures’ informativeness. As expected,
since VAG signals are, in general, symmetrical, mean and median values are not informative
in any preprocessing approach. However, the Rectiőed Average of the őltered signal proved
to be quite informative with coefBMC of around 0.58.

Figure 10.1: Central measures informativeness of the raw signal (upper plot), őltered signal
(middle plot), and the derivative signal (lower plot).

Figure 10.2 includes boxplot of this feature with corresponding class-pair coefBcoefficients.
It can clearly be seen, that the RAV increases with progressing stages of the chondromalacia.
However, there is practically no difference between the cmp3 and the oa groups. In general,
neighboring classes are not very well differentiated using the RAV, with the smallest coefB of
0.69 being determined for cmp1 and cmp2 neighboring pair. Less similar conditions of knee
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are differentiated more easily with the smallest coefB of 0.24 for the ctrl and cmp3 pair, and
0.33 for ctrl and oa.

Figure 10.2: Boxplot of the Rectiőed Average feature calculated for the őltered signal.

Results of the spread measures’ informativeness were included in the Figure 10.3. For the
features that were extracted with multiple parameters (like the IPerR or the percentiles),
maximal and minimal informativeness scores were showed, indicated by the darker and lighter
color, respectively.

Figure 10.3: Spread measures informativeness of the raw signal (upper plot), őltered signal
(middle plot), and the derivative signal (lower plot).

The analysis of the raw signal indicated low informativeness ( coefBMC > 0.9) for the
features of variance, standard deviation, MeanAD and MedianAD. This observation implies
limited insight into the inherent structure or characteristics of the raw signal via these mea-
sures. Notably, the spread and the R4 showed slightly improved informativeness, reŕected
coefBMC around 0.8.

The őltered signal shows a clear improvement in the informativeness of all spread features.
Decrease of coefBMC to approximately 0.73, 0.64, and 0.58 in the informativeness of variance,
standard deviation, and MeanAD shows that the frequency range of the őlter, i.e., 50 to
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1000 Hz, effectively isolates key information of the signal in the studied classiőcation context.
The MedianAD, spread, and R4 features also decreased in coefB informativeness, though
not as drastically, all achieving values around 0.75. Boxplot of the MeanAD feature was

Figure 10.4: Boxplot of the Mean Absolute Deviation feature calculated for the őltered
signal.

included in Figure 10.4. Note, that it is virtually the same as the RAV feature, plotted in
Figure 10.2. It is the result of the VAG signals’ symmetry. Since the mean value is close
to zero, the RAV feature and the MeanAD feature yield practically the same value for each
signal.

The derivative signal presented a more diverse results. While the informativeness scores
were generally superior to the raw signal, they were not as high as the őltered signal’s scores.
Variance and standard deviation showed rather low informativeness, achieving coefBMCabove
0.9. Both MeanAD and MedianAD proved do be slightly more informative, with the
coefBMC between 0.9 and 0.8. Interestingly, a loss of informativeness can be observed for
spread and R4 features compared to the raw signal, suggesting that these measures might
be more sensitive to absolute values in the signal rather than changes between successive
points, which differentiation emphasizes.

The percentile values, both singular and IPerR, show similar picture, with the values for
the őltered signal being the most informative, followed by the raw and the derivative one.
Detailed informativeness of percentiles was included in Figure 10.5. Plots in the upper part
of the Figure visualize the IPerR features informativeness, while lower part corresponds to
the singular percentile values.

The lowest coefBMC , i.e., the highest informativeness of the percentile values in the
raw signal is indeed greater than in the derivative signal. However, both the IPerR and the
singular percentile features seem to be more informative in general compared to the raw
signal. Moreover, the informativeness of singular percentiles of the derivative signal seem to
be lowest in the middle, i.e., around the median value. Lower and higher percentiles seem
more informative. This trend is much more visible in the őltered signal, with values of the
coefBMC around 0.6 for the 2-nd and the 98-th percentile. The boxplots of both features
were included in Figures 10.6 and 10.7.

It can be seen that with progressively worse condition of the joint, the range of őltered
signal’s values grows, i.e., the 2-nd percentile decreases, while the 98-th percentile increases.
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Figure 10.5: Detailed informativeness results of the Interpercentile Range (upper part) and
the singular percentiles (lower part), for the raw signal (left column), őltered signal (middle
column) and the derivative signal (right column).

Figure 10.6: Boxplot of the 2-nd percentile feature calculated for the őltered signal.

Figure 10.7: Boxplot of the 98-th percentile feature calculated for the őltered signal.
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That suggests that maybe redeőning R4 value to incorporate different number of extreme
samples would yield better results. On the IPerR plot, however, it can be seen that feature
deőned as the difference between high and low percentiles is not necessarily more informative
than the feature deőned as the singular percentile. The most informative percentage range,
i.e., the 10-th to 40-th percentile, achieved coefBMC of 0.66. Boxplot of this feature was
showed in Figure 10.8.

Figure 10.8: Boxplot of the 10-th to 40-th Interpercentile Range feature calculated for the
őltered signal.

The boxplot for the most informative IPerR feature seems to conőrm, that range of
őltered signal’s values increases with the for progressing knee joint condition. Interestingly,
for the discussed feature, the oa group seem more similar to the cmp2 group than to the
cmp3 ( coefB of 0.97 vs 0.92 with the coefB between the cmp2 and cmp3 being 0.8), which
was the case in all previously discussed features.

Simple shape features’ informativeness was included in Figure 10.9. Both skewness and
kurtosis proved to be uninformative, despite of the preprocessing approach. It seems sur-
prising given their extreme popularity in VAG-related studies.

Spiky Index, and its Rectiőed version also turn out to be of rather poor informativeness,
with the most informative version being the derivative signal. Since the difference operation
is virtually the high-pass őlter, it ampliőes the "spikyness" of the signal, which, apparently,
contains some information about the classiőed knee joint condition. Speciőc informativeness
values of of both SI and RSI, as functions of the threshold value, were plotted in Figure 10.10.

The SI and RSI yielded generally quite high values of coefBMC for the raw signal, with
the lowest value, i.e., the most informative, for the threshold of 0.99. It means that the
raw signal provides limited differentiation capacity, unless it is counting the instances where
the signal is close to its maximum value. This might be because the raw signal carries
a lot of noise or irrelevant information that obscures the informative patterns. On the
other hand, the őltered signal, provides somewhat higher informativeness, at a low threshold
(α = 0.01). The increase in informativeness could be due to the őltering process reducing
the noise in the signal, thereby enhancing the differentiation power among the condition
groups. Interestingly, with a threshold of 0, SI and RSI become completely uninformative.
This behavior seem completely opposite to the derivative version of the signal, which is
the most informative precisely at the α = 0, i.e., with no threshold. However, raising
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Figure 10.9: Simple statistical shape measures’ informativeness of the raw signal (upper
plot), őltered signal (middle plot), and the derivative signal (lower plot).

Figure 10.10: Detailed informativeness results of the Spiky Index (upper part) and the
Rectiőed Spiky Index (lower part), for the raw signal (left column), őltered signal (middle
column) and the derivative signal (right column).

the threshold even slightly makes the features signiőcantly less informative. This indicates
that the differencing process, in which change in signal value from one sample to the next
is calculated, provides the most distinguishable information among the condition groups.
Moreover, calculating the proportion of the values greater than zero in the derivative signal
is equivalent to counting proportion of the consecutive values in the raw signal, that are
not equal. Therefore, the most informative features, i.e., the SI and RSI with no threshold,
calculated on the derivative signal, measure how much the signal changes over time, rather
than the absolute values of the signal’s spikes.

Within each preprocessing approach, the SI and the RSI appear to behave similarly as
functions of the threshold level. This indicates, that the rectiőcation, despite altering the
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signal by converting all negative values into positive ones, does not drastically change the
informativeness of the features extracted from the signal. This observation further conőrms
symmetry of the vibroarthrogram around the zero value.

Another simple shape measure, i.e., the entropy, seem to be more informative. The
LEE feature seem quite informative for the őltered signal, while derivative signal and raw
signal show progressively higher coefBMC values. The binning entropy estimator achieved
highest values for the derivative signal, while the nearest neighbors one proved to be the most
informative for the őltered signal. More in-depth visualization of the entropy informativeness,
as a function of both the number of bins and neighbors, was provided in the Figure 10.11.

Figure 10.11: Detailed informativeness results of the entropy estimation using the binning
(upper part) and the nearest neighbors (lower part) approach, for the raw signal (left col-
umn), őltered signal (middle column) and the derivative signal (right column).

The binning entropy estimation for raw signal proved to be of very low informativeness,
with coefBMC consistently achieving around 0.98 for up to a hundred bins. Slightly higher
score, of around 0.96, was achieved for 2048 bins. Informativeness of the same feature im-
proved after őltering. Nevertheless, coefBMC proved to be quite high, of over 0.9, for all bin
numbers. The derivative signal, up to a hundred bins, also provided rather uninformative
binning entropy estimation, yielding results somewhere between the raw and the őltered sig-
nal. However, for 2048 bins, signiőcant improvement was observed, with coefBMC decreasing
to around 0.81. For all preprocessing approaches, despite being rather uninformative in gen-
eral, the informativeness increased with increased number of bins. Notably, however, all
curves seem to plateau well before a hundred bins, but for the raw signal and the derivative
signal, informativeness of the 2048 bins seem to break this plateau. This can be explained
by the fact that when the number of bins is relatively small, each bin is broad enough to
encompass a wide range of signal values, potentially oversimplifying the signal and reduc-
ing informativeness. As the number of bins increases, the informativeness also increases as
the binning approach starts to capture more intricate patterns within the data. However,
beyond a certain number of bins, each bin becomes so narrow that additional granularity
does not contribute to new meaningful information, resulting in a plateau. For the raw and
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derivative signal, the signiőcant increase in informativeness at 2048 bins suggests that these
signals may have contained high-resolution features or patterns that only became discernible
when the binning resolution was signiőcantly increased, breaking the previous plateau.

The nearest neighbors entropy estimator yielded much better results for all preprocessing
approaches except for the raw signal. The őltered signal provided much more informative
entropy estimation, with coefBMC as low as around 0.62. Derivative signal, again, allowed for
a little more informative feature extraction compared to the raw signal, but worse than the
őltered one. Interestingly, informativeness of the entropy estimation did not change signiő-
cantly with the number of neighbors for neither preprocessing approach. More informative
results the nearest neighbors approach indicate that the characteristics of the VAG signals
are better captured using a method that considers proximity of points, rather than simply
frequency distribution as in binning. Those results conőrm that vibroarthrograms contain
complex or nonlinear components [10].

Note, however, that the binning and the nearest neighbors entropy estimators differ in
the types of entropy they estimate, which drives their varying degrees of informativeness.
Binning, a histogram-based approach, estimates Shannon entropy based on the frequency
distribution within predeőned bins. However, this discretization can lead to an oversimpli-
őcation of complex signals, potentially resulting in lost information if the number of bins
does not adequately capture the signal’s structure. On the other hand, the nearest neighbors
method estimates differential entropy, suited for continuous distributions, by considering dis-
tances to neighboring points rather than discretizing the signal. This approach inherently
maintains the signal’s continuity, potentially capturing more nuanced and intricate patterns
and proving more informative for complex signal data. The boxplot of the most informative
entropy estimation was included in Figure 10.12.

Figure 10.12: Boxplot of the k -nn Entropy feature calculated for the őltered signal.

For the healthy joint, i.e., the control group, entropy values are lowest, scoring from
around −2 to around −0.5. The progressing chondromalacia stages are characterized by
increased entropy values, with the third stage values being in approximate range of −0.5 to
0.5. Finally, the osteoarthritis group includes entropy values of around −0.7 to around 0.2.
The nearest neighbors entropy estimation provides a measure of "spread" of a distribution.
When differential entropy is negative, it usually means that the probability density function
of the variable is more concentrated, i.e., the random variable is more likely to be around
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certain values than others, making the signal more predictable. That is, negative entropy
value indicates that the signal samples are relatively predictable or more regular. This can
seen in the healthy joint group with entropy values between −2 to −0.5. As entropy values
increase, predictability of the signal samples decreases, indicating more random or complex
vibroarthrogram. This is observed in chondromalacia progression and can be explained by
increased structural and functional irregularities in the knee joint. Interestingly, in this
entropy feature, second stage chondromalacia is more similar to the osteoarthritis group
than the third stage chondromalacia. Similar pattern was observed in the IPerR feature.

Informativeness of the complex shape features was provided, in form of the barplot, in
Figure 10.13.

Figure 10.13: Complex statistical shape measures’ informativeness of the raw signal (upper
plot), őltered signal (middle plot), and the derivative signal (lower plot).

For the raw signal, high coefBMC scores indicating low informativeness were observed
across all complex shape features. The CV, MCV, and RCV indicate similar variation across
the knee joint classes. Low informativeness of the CV features is to be expected to some
extent across all preprocessing approaches, because of the earlier mentioned symmetry of
the VAG signals. Since their average value is close to zero, the CV can become very large
or undeőned, rendering its information content potentially misleading or less relevant for
assessing the true variability within the signal. The FF, deőned as the ratio of the RMS
to the RAV, also proved to be of low informativeness, suggesting similarity of the ratio
between classes. The rest of the factors, i.e., the CF, IF, and the MF also achieved high
coefBMC scores, indicating similarity of classes in the context of extreme value ratios.

After őltering the signal, the informativeness of some features improved, as in the pre-
vious results. Notably, coefBMC decreased the most for the MCV, the RCV and the FF.
Both the MCV and RCV achieved better informativeness scores. This can be explained
by their deőnitions: the Modiőed Coefficient of Variation is the standard deviation divided
by the mean of the rectiőed signal, and Rectiőed Coefficient of Variation is the standard
deviation of the rectiőed signal divided by the mean of the rectiőed signal. Filtering the
vibroarthrogram likely emphasized speciőc frequency components that enhanced variations
crucial for class distinction. The similarity in their informativeness stems from their shared
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sensitivity to these variations, with both metrics responding to the absolute values of the
signal’s magnitude. Note, that the Form Factor feature achieved the same informativness as
the MCV feature for all preprocessing approaches. This can be attributed to the symmetry
of the vibroarthrogram. Remember, that the standard deviation is deőned as the square root
of the mean squared deviations from the mean, while the RMS is deőned as the square root
of the average of the squared values of the signal. Since the average value is close to zero,
the standard deviation is almost equal to the RMS value, which results in almost identical
deőnitions of the MCV and the FF.

Also similarly to previous results, features extracted from the derivative signal achieved
informativeness scores better than the raw signal, but worse than the őltered signal. This
indicates that the difference operation has revealed some important characteristics of the
signal, but not as effectively as őltering. Nevertheless, complex shape features proved to be
of rather low information content, regardless of the employed preprocessing approach. In
other words, described complex shape features proved to be unable to emphasize or capture
the distinctions between the knee joint classes within the VAG signals under analysis.

10.2 Rolling features

Results of the rolling features, i.e., the VMS, the CVNMA and the CVNMV, were provided
in the Figure 10.14.

Figure 10.14: Rolling signal measures’ informativeness of the raw signal (upper plot), őltered
signal (middle plot), and the derivative signal (lower plot).

Detailed results of the rolling features’ informativeness as a function of window size were
provided in Figure 10.15. The VMS feature proved to be the most informative for the
őltered signal. For all preprocessing approaches, smaller window sizes seem to provide more
informative VMS measures, however, informativeness does not seem to strongly depend on
the window size. In general, the VMS informativeness seem to be low, with the lowest
coefBMC score equal to 0.87, achieved for the őltered signal and window size of 0.2 ms. For
5-ms window, commonly used in literature, the VMS feature yielded coefBMC score of 0.89.
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Figure 10.15: Detailed informativeness results of the rolling features: the Variance of the
Mean Squared (upper plot), the Coefficient of Variation of the Normalized Moving Average
(middle plot), and the Coefficient of Variation of the Normalized Moving Variance (lower
plot). In all plots, window size of 5 ms was indicated by the dotted line.

The stationarity rolling features, i.e., the CVNMA and the CVNMV seem to achieve
better informativeness scores for windows sizes of around 1 ms. However, their informative-
ness is poor in general, indicating that stationarity of the VAG signals, at least measured by
those features, is not different across knee joint conditions.

10.3 Difference and frequency features

Figure 10.16 includes results of the information content in difference and frequency features
calculated from time domain. Features extracted from the raw signal yielded moderate
coefBMC scores, with the most informative being Hjorth’s complexiy, achieving 0.798. It
is not surprising, given its popularity across VAG-related literature. Mobility proved to
be not very informative, while the Mean of Absolute Differences scored 0.832. From the
Zero Crossing Rate and the Turns Count Rate with both thresholds, only TCRβ, i.e., with
threshold dependent on the spread of values, proved to be decently informative, scoring
coefBMC of 0.862. On the other hand, TCRα and ZCRα proved to be only two features in
this category, which informativeness increase after differentiation. Detailed results of the
threshold-dependent features will be provided later.

Filtering of the signal improved informativeness of two features: the TCRβ and the Mean
of Absolute Differences. With the coefBMC score of around 0.6, the MoAD proved to be one
of the most informative features extracted from time domain. Boxplot of the this feature,
with corresponding coefB scores for each class pair, was included in Figure 10.17. The
variability of the signal, measured by the MoAD feature, seem to increase along with level
of the knee joint degradation. Similar to other features, neighboring classes seem to be
difficult to differentiate, with the coefB varying from 0.7 to 0.97 for the cmp3 and oa pair.
Differentiation between cmp2 and oa, and cmp2 and cmp3, yields coefB values of 0.85 and
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Figure 10.16: Difference and time-domain frequency measures’ informativeness of the raw
signal (upper plot), őltered signal (middle plot), and the derivative signal (lower plot).

Figure 10.17: Boxplot of the Mean of Absolute Differences feature calculated for the őltered
signal.

0.76, respectively. This suggests that the Mean of Absolute Differences complements the
previously discussed entropy feature, which was lacking in differentiation ability between
cmp2 and oa classes.

Figures 10.18 and 10.19 include informativeness scores of the ZCR and the TCR features,
respectively, as functions of a threshold. The Zero Crossing Rate with α threshold, i.e.,
dependent on the standard deviation of signal, seems to be uninformative for the raw signal
and the őltered signal. Slight informativeness ŕuctuations can be observed, but regardless of
threshold, coefBMC is above 0.9, indicating low information content. The derivative signal
seems to achieve somewhat better coefBMC scores for threshold values of around 5 to 15
percent of the standard deviation. For lower threshold values, zero crossings are counted,
that do not differ between knee joint conditions signals. On the other hand, higher thresholds
render ZCRα feature less sensitive to zero crossings that can differentiate classes. The ZCR
with threshold β, that is, dependent on the range of values, seem to be uninformative in
general. In other words, it cannot differentiate between analyzed VAG signals. However, an
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Figure 10.18: Informativeness of the Zero Crossing Rate as a function of the threshold
α (upper row) and β (lower row) for the raw signal (left column), őltered signal (middle
column) and the derivative signal (right column).

interesting insight can be drawn from inspection of the Figure’s 10.18 lower row: it seems
that VAG signals of all classes seem to have similar Zero Crossing Rate when counting only
zero crossings greater than around 30, 10 or 40 percent of the spread, when calculated for the
raw, őltered or derivative signal, respectively. It reŕects that these thresholds likely capture
ŕuctuations or noise common across all classes, rather than features that distinguish them,
thus leading to the observed values of coefBMC equal to 1.

Figure 10.19: Informativeness of the Turns Count Rate as a function of the threshold α
(upper row) and β (lower row) for the raw signal (left column), őltered signal (middle
column) and the derivative signal (right column).

The Turns Count Rate with threshold α seem to be uninformative for the raw signal,
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regardless of the threshold. The őltered signal, however, seem to follow a pattern similar to
the ZCRα of the derivative signal, yet being a little more informative (lowest coefBMC of
around 0.83). See also, that the TCRα seem much "smoother" than the ZCRα of the deriva-
tive signal. It can be explained by the high-frequency ŕuctuations (above 1 kHz), surpassed
by the őlter. The TCRα of the derivative signal, however, also seems decently informative
compared to the ZCRα, with seemingly smaller dependence on the threshold.

The TCRβ of the raw signal seem decently informative for threshold equal to around
50 percent of the spread. It means that direction changes greater than around 50 percent
of the spread of values differ between classes. Nevertheless, with coefBMC of around 0.86,
those between-the-classes differences are not the most pronounced. For the őltered signal,
the TCR with spread-based threshold achieved coefBMC above 0.9 for most thresholds. The
derivative signal provided the least informative TCRβ, with hardly any coefBMC scores below
0.95.

10.4 Self-similarity features

Informativeness results of the Autocorrelation Function features were showed in Figure 10.20.
All three central tendency measures, i.e., the Average Autocorrelation Function, the Rectiőed
Average Autocorrelation Function, and the Mean Squared Autocorrelation Function proved
to be similarly uninformative for all preprocessing approaches, achieving coefBMC value
above 0.9. Values slightly lower than 0.9 were scored by the First Zero Crossing Time
and the Autocorrelation Function Zero Crossing Rate features of the őltered signal, but for
both the raw and the derivative signal, coefBMC achieved values well over 0.9. Finally, the
Autocorrelation Function Turns Count Rate feature proved to be somewhat informative, with
the coefBMC of around 0.81, calculated for the derivative signal. It means that there are some
minor but consistent differences between knee joint conditions, in the number of times that
the signal’s Autocorrelation Function changes its direction. Generally low informativeness of

Figure 10.20: Autocorrelation Function measures’ informativeness of the raw signal (upper
plot), őltered signal (middle plot), and the derivative signal (lower plot).
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the features based on the Autocorrelation Function can be attributed to a couple of reasons.
First, the features were calculated for the full ACF, i.e., for the ACF of length one sample
smaller than the signal itself. This can result in a considerable amount of noise, because
for increasing number of samples in the ACF, sub-signals length, for which the correlation
is calculated, decreases. Another reason could be that the sensitivity of the ACF to the
speciőc characteristics of the signal might be inherently limited. This limitation might stem
from the ACF properties, which could constrain its ability to capture nuanced variations in
the signal’s structure. That is, the ACF can be of limited use for VAG signals in general, at
least with preprocessing approaches followed in this work.

In the Figure 10.21, summarized informativeness results of the features based on the
Multifractal Detrended Fluctuation Analysis were provided. Most features were calculated
for speciőc value of the q order. Detailed results of those features, with the informativeness
as a function of the q order were provided in Figure 10.22. One feature calculated for whole
multifractal spectrum is the width of the spectrum. It indicates the multifractality of the
signal: a wider spectrum signiőes higher multifractality, while a narrow one suggests the
contrary. In other words, a wide spectrum indicates that the signal displays diverse patterns
or behaviors at different scales, while a narrow spectrum means that the signal is more
uniform across the scales. Low informativeness of the spectrum’s width suggests, that VAG
signals of all condition classes exhibit similar degree of multifractality.

Figure 10.21: Multifractal Detrended Fluctuation Analysis measures’ informativeness of the
raw signal (upper plot), őltered signal (middle plot), and the derivative signal (lower plot).

Note, that in Figure 10.22, both polynomial order values (m) were included, with the
linear trend (m = 1) plotted in black, and quadratic trend (m = 2) plotted in green. The
polynomial order determines the nature of trends removed from the signal. For m = 1,
linear trends within each segment are subtracted, eliminating any simple drifts or steadily
increasing or decreasing tendencies in the signal. On the other hand, m = 2 corresponds to
removing quadratic trends, offering a more ŕexible detrending process. Note, that for most
features, the informativeness results are similar, or consistent, for both orders. It indicates
the vibroarthrogram’s intrinsic fractal properties are robust against the detrending order.
In other words, the multifractality and scaling behaviors are inherent characteristics of the
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VAG signal. In cases, when informativeness between the trend orders differ, the lower trend
usually provides better results. It suggests that the primary trends in the vibroarthrograms
are predominantly linear, and that a simple linear detrending is adequate to reveal the
core fractal behaviors. Increasing the order can result in over-detrending, i.e., removing
ŕuctuations that are actually informative, or distinctive between the knee joint conditions.

Figure 10.22: Informativeness scores of the Multifractal Detrended Fluctuation Analysis
features in a function of the moment order q: the Hurst, mass, singularity, and dimensionality
exponents from top to bottom row. Left, middle and right column correspond to the raw,
őltered and derivative signal, respectively.

The Hurst exponent of the raw signal was relatively uninformative for negative q values,
with the coefBMC of around 0.96. This suggests that small ŕuctuations, emphasized by the
negative q values, do not hold much differentiating power between condition classes. For
q = 0, which gives an equal weight to all ŕuctuations, the informativeness increases, with
the coefBMC slightly above 0.8. It means that while considering average behavior across
all scales, the Hurst exponent provides more distinction between knee joint conditions. For
q = 1 the ŕuctuations are weighted linearly based on their size. In this case informativeness
reaches maximum, yielding coefBMC of around 0.68 and making it the most distinguishing
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feature from the Multifractal DFA. It captures more common or average-sized ŕuctuations,
which seem to hold the most distinguishing information in the analyzed context. As q
increases beyond 1, informativeness begins to drop, reaching coefBMC of around 0.75 for
q = 5. This shows that emphasizing larger ŕuctuations does not seem to provide as much
differentiation between classes as more commonly observed ŕuctuations. However, comparing
informativeness scores between negative and positive values of q in general, shows that the
information content of larger ŕuctuations seem to be greater than the information content
of smaller ŕuctuations.

For the őltered signal, the Hurst exponent showed a similar informativeness pattern.
However, the values of informativeness were signiőcantly lower, with the lowest coefBMC of
around 0.88 for q = 1. This reduction in informativeness suggests that the őltering process
likely attenuated or removed from signals speciőc information content which could have been
useful for class differentiation. The derivative signal also followed pattern similar to the raw
and őltered signals, with informativeness greater than the őltered signal, but smaller than
the raw one.

The mass exponent, for all preprocessing approaches, provided informativeness scores
identical to the Hurst exponent, except for the q = 0 case. It is caused by the deőnition of the
mass exponent, which is equal to the Hurst exponent multiplied by the q order and decreased
by one. Therefore, for all q values, the mass exponent is a quasi-linear transformation of the
Hurst exponent, preserving its information content, with an exception for q = 0 case, which
makes the mass exponent for each signal equal to 0, completely removing its information
content.

The singularity exponent, deőned as the difference of consecutive mass exponents, also
provided the most informative feature for q = 1. It is the case, in which from the mass
exponent of q order 1, the mass exponent of q order 0 is subtracted. And, since the latter
is always equal to 0, the singularity exponent for q order 1 is equal to the mass exponent
of q order 1. For other cases, the informativeness was decreased or equal compared to the
mass exponent for corresponding order q. It suggests that the nuanced variations between
segments, captured by the singularity exponent, are not as discriminative between the classes
as the direct fractal properties represented by the mass exponent.

The dimensionality exponent shows how the distribution of singularities, as quantiőed
by the singularity exponent, varies across different scales of the signal. In the current con-
text, for negative q values, its information content proved to be low across all preprocess-
ing approaches. This suggests that small ŕuctuations in the signal don’t signiőcantly vary
across the different knee joint condition classes and hence are not effective for differentia-
tion. Interestingly, for q orders of 0 and 1, informativeness dropped to zero. It is, again, a
result of the deőnition of the dimensionality exponent, which is equal to the mass exponent
subtracted from the order q multiplied by the singularity exponent (see Table 5.8). This
deőnition, for q order 0, makes the value of singularity exponent zero for all signals. On the
other hand, for q order equal to 1, the deőnition of dimensionality exponent reduces to the
1 · α1 − τ1 = τ1 − τ0 − τ1 = −τ0, where the αq is q-order singularity exponent, and τq is the
q-order mass exponent. As discussed previously, τ0 is equal to zero for all signals, rendering
it uninformative.

Boxplot of the most informative DFA feature, i.e., the Hurst exponent for q order 1 and
m order 1, was provided in Figure 10.23.
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Figure 10.23: Boxplot of the Hurst Exponent feature calculated for the raw signal.

Values of the Hurst exponent greater than 1 indicate signals similar to random walks in
their structure [150]. Moreover, greater values of the Hurst exponent indicate more robust
trend-following behavior of the signal. In the studied context, the Hurst exponent seem to
decrease with the joint damage, achieving greatest values for the control group and smallest
for the cmp3. It means that in less damaged joints, the trend is more pronounced compared
to the noise or random ŕuctuations, than in more damaged ones. Interestingly, the Hurst
exponent is another VAG signal feature that is more similar within the cmp2 and oa class
pair ( coefB = 0.96) than the cmp3 and oa ( coefB = 0.95). Though the difference is not
great, the cmp2 and cmp3 class pair is differentiated better with coefB of 0.84.

10.5 Phase Space Reconstruction features

Informativeness of the Reconstructed Phase Space features, for both methods of choosing
the embedding dimension, were plotted in Figure 10.24.

Figure 10.24: Reconstructed Phase Space measures’ informativeness of the raw signal (upper
plot), őltered signal (middle plot), and the derivative signal (lower plot).
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Features deőned as the optimal time delay for the RPS, i.e., the τzc and the τe, did
not turned out to have much differencing power between VAG classes, with the smallest
coefBMC of around 0.88 for the τzc of the őltered signal. Since the τzc is the linear trans-
formation of the FZCT of the ACF, their informativeness scores are the same (compare to
Figure 10.20). The second method, i.e., the őrst time the ACF crosses 1− 1

e
value also proved

to be rather uninformative. Similar values were achieved by the embedding dimension cal-
culated by the False Nearest Neighbors method. For both the embedding dimension, and
the time delay, the őrst zero crossing of the ACF proved to be a better method of optimal
time delay estimation, in terms of information content. The Correlation Dimension feature,
contrary to the delay itself, proved to be more informative when calculated for the τe delay.
However, in general, its informativeness scores proved to be low, with coefBMC of around
0.88 for the most informative setup of őltered signal and τe delay.

On the other hand, the Largest Lyapunov Exponent proved to be quite informative,
especially for the raw signal, scoring coefBMC of around 0.67 and 0.76 for the τzc and the τe
delays, respectively. Both őltered and derivative signals proved to be rather uninformative,
no matter which delay was used in the phase space reconstruction process. It can be explained
by the low-frequency component of the raw signal, that is generated by the movement of
the knee joint (see Figure 2.2). In the calculation of the LLE, proximate points are used to
estimate the rate of divergence or convergence of trajectories over time, providing insights
into the underlying dynamical properties of the system that generated the signal. Keeping
the movement-generated low-frequency component enables points to be considered proximate
only, when their high-amplitude low-frequency component is in similar phase. In other words,
points are considered proximate, when they are both similar in their "spikydness" around
the neighborhood, and in their movement phase. That way, the raw signal incorporates the
information about the actual knee joint movement phase, which is lost in both őltering and
differencing operations. Boxplot of the most informative LLE was provided in Figure 10.25.

Figure 10.25: Boxplot of the Largest Lyapunov Exponent feature calculated for the raw
signal.

The values of the Largest Lyapunov Exponent vary from 0 to around 2000. Those val-
ues can be interpreted as measures of the VAG-generating system’s sensitivity to initial
conditions, with 0 indicating stable and predictable dynamics with trajectories within the
reconstructed phase space that remain close, and higher values signifying the average ex-
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ponential rate at which system trajectories diverge, reŕecting increasing levels of chaos and
unpredictability in the system. Clearly, complexity of the VAG-generating system increases
with progressing conditions of the knee joint, with the highest values of LLE scored, again,
by the third stage CMP group.

Informativeness of the features based on the Recurrence Quantiőcation Analysis were
plotted in Figure 10.26.

Figure 10.26: Recurrence Quantiőcation Analysis measures’ informativeness of the raw signal
(upper plot), őltered signal (middle plot), and the derivative signal (lower plot).

The Maximum Difference feature proved to be the most informative for the őltered signal,
with the coefBMC of 0.76. For all preprocessing approaches, this feature did not differ in
its information content between two methods of optimal time delay estimation, since it is
basically equivalent to the statistical spread feature (see Figure 10.3). Boxplot of this feature
was provided in Figure 10.27. Other methods, however, proved to be uninformative, with the
lowest coefBMC of 0.89 scored by the Average Diagonal Line feature of the raw signal with the
time delay of the ACF’s őrst zero crossing. Their low informativeness can be explained by the
time delay estimation method, as for time delay of 1, used by Kręcisz and Bączkowicz [5],
they proved to be informative enough to be chosen by the feature selection algorithms.
Another reason could be that in the current work, their values were approximated, which
potentially could diminish their differencing capabilities.

In the boxplot of the Maximum Distance feature, it can clearly be seen that the spread
of values increases with progressing knee joint degeneration, achieving highest values for the
oa group. Values close to zero, extracted from some of the VAG signals from the control and
cmp1 classes, mean that there are hardly any ŕuctuations observed in the signal. On the
other hand, the median value of the Maximal Distance feature of the oa group is above 10,
with the greatest value as high as 14. Note, that the VAG signals were recorder in a range
from negative to positive 5 volts, meaning that the őltering process ampliőed some of the
extreme values.

In Figure 10.28 summary of embedded entropy measures’ informativeness were included.
Bars ApEn (rmax) and ApEn rmax correspond to values of the Approximate Entropy that
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Figure 10.27: Boxplot of the Maximum Distance in the RPS (statistical spread) feature
calculated for the őltered signal.

maximize the entropy value, and the radius r that maximizes this value, respectively. The
same stands for the Sample Entropy measure.

Figure 10.28: Entropy measures’ informativeness of the raw signal (upper plot), őltered
signal (middle plot), and the derivative signal (lower plot).

Detailed results of both the Approximate Entropy and the Sample Entropy, calculated
for őxed r value, were plotted in Figure 10.29. Clearly, informativeness proved to be highest
for the raw signal. It can be explained similarly to the Largest Lyapunov Exponent mea-
sures. The embedded-signal analyzes seem to be able to utilize information contained in the
low-frequency component, related to the movement phase of the knee joint. In the Approxi-
mate Entropy and the Sample Entropy, the similarity of short sub-signals is used to quantify
the unpredictability of the signal. It is done by calculating the logarithmic likelihood that
sub-signals that are similar for a certain length will remain close when the length is increased.
High-amplitude low-frequency component ensures that those sub-signals are considered sim-
ilar only when they are in similar movement phases of the knee joint, increasing information
extracted by both ApEn and SampEn.
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Figure 10.29: Detailed informativeness results of the Approximate Entropy (upper row) and
the Sample Entropy (lower row) of the raw signal (upper plot), őltered signal (middle plot),
and the derivative signal (lower plot). Results for the őxed r parameter across the signals.

Comparing plots of the raw and őltered signals, it can be seen that for the raw signal,
the informativeness of both entropy measures increases with greater r, and the opposite
can be observed for the őltered signal. It can be explained, again, by the low-frequency
component. The radius r, serving as a threshold to consider sub-signals similar, needs to be
greater when considering movement-generated component present in the raw signal because
of its high-amplitude. The derivative signal seem to be similarly informative to the őltered
signal. Patterns observed in right-column plots of Figure 10.29, however, seem to be much
less smooth than those found in left and middle columns. It can be explained by the much
more noisy nature of the derivative signal. One more thing to consider is the spread and
the standard deviation of the signal’s values after each preprocessing. Their boxplots were
included in Figure 10.30.

Figure 10.30: Spread (left) and standard deviation (right) of signals after each preprocessing.

Clearly, standard deviation of both őltered and derivative signals is much less compared
to the raw signal. Their spread, however, is less affected, and can potentially increase. In
the ApEn and SampEn features, the radius r is used as a multiplier of the std, and the std
of the derivative signal is much lower than the other preprocessing approaches. Therefore,
right-column plots of Figure 10.29 could be though of as corresponding to "stretched out"
slices of low-r parts of plots for raw and őltered signals.

Interestingly, in most plots, length of sub-signals (m) used in the most informative ver-
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sions of the features can be seen to be much greater than values of 2 or 3 suggested in
literature. This could indicate, that VAG signals used in the current work could potentially
be over-sampled and smaller sampling frequencies could be enough to be descriptive, at least
in terms of Approximate Entropy and Sample Entropy. In previous work using the same
signal base, Kręcisz and Bączkowicz [5] used Multiscale Sample Entropy, i.e., SampEn calcu-
lated for non-overlapping moving-average signal, with window sizes varying from 7 to 30. In
the feature selection step, they selected window sizes of 14 and 30, which could conőrm over-
sampled VAG signal conclusion. Note, that this conclusion is to be considered in embedding
entropy measures context only.

In all entropy results analyzed to this point, entropy measures were obtained for the same
r across all signals. However, another approach is to choose r for each signal separately, in
a way to maximize the entropy measure [163]. In Figure 10.31, informativeness of this
approach was presented, for varying m parameter. However, in this approach, the m is
constant across all signals. One more option could be to őrst choose m using the False
Nearest Neighbors algorithm, and only then choose the r parameter maximizing the entropy.
This approach was also included in each plot of Figure 10.31, indicated by the dot marker.
Finally, informativeness of the r parameter treated as a feature were also included.

Figure 10.31: Detailed informativeness results of the Approximate Entropy (upper row)
and the Sample Entropy (lower row) of the raw signal (left column), őltered signal (middle
column), and the derivative signal (right column). Results for the r parameter maximizing
the entropy measure. ∗False Nearest Neighbors algorithm.

Approach of maximizing r does not seem to provide more informative entropy measures
compared to őxed r. Moreover, őrst choosing m using the False Nearest Neighbors also
does not seem to improve informativeness, with a exception for the ApEn calculated for the
derivative signal. Interestingly, for the őltered signal, maximizing SampEn seem to provide
perfectly uninformative feature, i.e., scoring the coefBMC of 1. It means that the same r
maximizes the SampEn of the őltered signals across all signals. Moreover, the maximum
SampEn also seem to be the same across all vibroarthrograms, for őxed m. For the m őrst
chosen by the False Nearest Neighbors algorithm, informativeness is extremely small, but
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non-zero ( coefBMC ̸= 1), meaning that there are some differences across vibroarthrograms.
In general, informativeness of ApEn and SampEn is very similar within all preprocessing

approaches. Slightly lower values of coefBMC in the ApEn can be explained by lower variance
of ApEn values compared to the SampEn [162]. Since VAG signals used in this work are
rather long, bias of the ApEn is greatly reduced, apparently making it more informative
feature compared to the SampEn. Boxplot of the most informative embedding entropy, i.e.,
the Approximate Entropy with m = 10 and r = 0.75 calculated for the raw signal, was
included in Figure 10.32.

Figure 10.32: Boxplot of the Approximate Entropy feature calculated for the raw signal.

The Approximate Entropy generally increases with progressing knee joint conditions,
achieving greatest values for the third stage Chondromalacia Pattellae class. For the Os-
teoarthritis class, however, ApEn values are very similar to the cmp3 ( coefB = 0.95). Inter-
estingly, those results seem to be exactly opposite to the Multiscale Sample Entropy used
by Kręcisz and Bączkowicz [5]. In their study, the entropy values seem to decrease with
progressing knee joint degeneration, achieving smallest values for the oa group. It can be
explained by the őltering process used in [5], which removed low-frequency components from
the signals. Therefore, in their work, the SampEn measured similarity of sub-signals within
the signal in general. In the current work, on the other hand, similarity of sub-signals was
additionally "őltered" by the knee joint movement phase.

10.6 Correlation of the features

In this section, correlation of the time-domain features within each preprocessing, and be-
tween preprocessings will be discussed. For the parametric features, i.e., ones that were
calculated for multiple parameters, only the most informative feature was used. Infor-
mativeness scores of those features were earlier presented as the lowest bars in barplots.
Plots 10.33, 10.34, and 10.35 include correlations of features within the raw, őltered and
derivative signals, respectively.

In each preprocessing approach, central tendency measures, i.e., the mean, mode and
median values proved to be relatively uncorrelated. It can seem surprising, and is an effect
of the skewed distribution of values discussed earlier. However, for the all preprocessing
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Figure 10.33: Correlation of time domain features obtained for the raw signal.

approaches, the power features, i.e., the ASP, the RMS and RAV proved to be highly cor-
related. It is not very surprising given their similar deőnitions. And since VAG signals
are symmetrical, the power features are also highly correlated to the spread features. One
exception is the percentile feature of the derivative signal, which is negatively correlated to
power and spread features. It can be explained by the low percentile value that proven to be
most informative in the derivative signal. With increased variability of the signal, the lower
percentiles decreased.

For all preprocessing approaches, skewness proved to be correlated to other features rather
poorly, proving uniqueness of its information content. Kurtosis proved to be correlated to
some complex shape features, especially Crest Factor, Impulse Factor and Margin Factor.
All three factors are sensitive to the extreme or peak values of a signal due to the inclusion
of the maximum value in their numerators. This shared sensitivity to extremes aligns with
kurtosis’s measurement of the "tailedness" or extremeness of a distribution, leading to their
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Figure 10.34: Correlation of time domain features obtained for the őltered signal.

high correlation. Surprisingly, for the őltered and derivative signals, kurtosis was also highly
correlated to the Coefficient of Variation of the Normalized Moving Variance feature, which
is one of features that are qualitatively different, since are deőned considering temporal order
of signal samples. When a signal has high kurtosis, indicating frequent extreme deviations
from the mean, it naturally leads to pronounced changes in its moving variance. These
ŕuctuations, when normalized and expressed relative to their mean, yield a high CVNMV.
In the raw signal, however, a low-frequency high-amplitude component is present. While the
kurtosis, focused on extreme values or "tailedness", might not signiőcantly change due to this
component, the CVNMV, which captures local ŕuctuations in variance, will be inŕuenced.
The low-frequency component smooths out the local variance, decreasing the CVNMV. As
a result, even if kurtosis remains relatively high due to other extreme values in the signal,
the CVNMV decreases, leading to a diminished correlation between the two metrics in the
presence of low-frequency high-amplitude components.
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Figure 10.35: Correlation of time domain features obtained for the derivative signal.

Other simple statistical shape features, including the spiky indices and entropies proved to
be correlated to each other within the raw and the derivative signals. In the őltered signal,
however, both spiky indices and the binning entropy estimator create a highly correlated
cluster, that is less correlated to the k -nn and LEE, which are more correlated to each
other. Interestingly, the Log Energy Entropy feature proved to be correlated to the most
informative k -nn entropy estimator, despite differences in their deőnitions.

Complex shape features mostly correlate with each other within each preprocessing ap-
proach. In the raw signal, two distinct clusters can be observed: features deőned using std or
RMS in the numerator (MCV, RCV, FF) and features deőned using maximal value (CF, IF,
MF). It can be explained by great inŕuence of both őltering and differentiating on the std,
but not maximal value (see Figure 10.30). Note, that the CV does not really correlate with
any other feature, which is a result of its deőnition using average value in the denominator.
Since VAG signals are relatively symmetrical across the y-axis, their average is close to zero,
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rendering the CV inŕated or undeőned for most signals.
The őrst feature calculated using the rolling approach, so the VMS, proved to be relatively

correlated with power and variability features, for all preprocessing methods. Two other
features, so the CVNMA and the CVNMV turned out to be relatively uncorrelated with
other features, with previously mentioned exception of CVNMV’s correlation with kurtosis
calculated for the őltered and derivative signals.

Difference and frequency features proved to be rather uncorrelated in most part, with
an exception of the Mean of Absolute Differences being correlated with power and shape
features withing the őltered and derivative signals. Also, Hjorth’s complexity showed some
correlation with the Multifractal DFA features, but only for the raw and őltered signals.
Complexity, being deőned using two differences, can be considered rather sensitive to noise.
In the context of already derivative signal, its low informativeness, and low correlation with
other features can be explained by extremely high noise content.

Features obtained using Autocorrelation Function show no considerable correlations, with
two exceptions. First, the RAACF and MSACF show correlation to each other within each
preprocessing. Their deőnition is very similar, so this correlation is not surprising. Both
measures are relatively correlated to the őrst zero crossing time of the ACF. Both RAACF
and MSACF reŕect a signal’s overall repetitiveness, while the őrst zero crossing time indicates
the duration this repetitiveness remains signiőcant. Their high correlation suggests that more
repetitive signals maintain their self-similarity longer before the autocorrelation diminishes.

The Multifractal Detrended Fluctuation Analysis features, within each preprocessing ap-
proach, show extremely high correlation between the linear and quadratic detrending process
(m = 1 and m = 2). Also, the Hurst, the mass and the singularity exponents are extremely
correlated. This is a result of their deőnition and was discussed earlier. Interestingly, for the
őltered and derivative signals, those exponents showed high negative correlation to power fea-
tures. In the absence of low-frequency, high-amplitude components, the negative correlation
between the the DFA features and power features indicates that pronounced high-frequency
ŕuctuations are predominantly anti-persistent. That is, when the signal exhibits more high-
frequency variations, they tend to reverse direction more frequently rather than continuing
in the same trend. However, in raw signals, the low-frequency components can skew power
values, masking this relationship.

Width of the fractal spectrum, on the other hand, proved to be positively correlated to
power features, but only for the raw signal. It further conőrms the link between signal’s power
and complexity, greatly inŕuenced by high-amplitude low-frequency components. After re-
moving these components in őltered and derivative signals, the high-frequency ŕuctuations,
though anti-persistent, do not signiőcantly impact the signal’s multifractality, leading to a
reduction of correlation with power.

For the raw and the derivative signals, optimal time delays, τzc and τe showed no major
correlations to other features. However, for the őltered signal, those times were highly
correlated with the DFA features. It makes sense, since high Hurst exponent indicates long-
term dependencies in a signal, causing the ACF to decay more slowly, and rendering values
of both τzc and τe greater. On the other hand, lower Hurst exponent indicates short-term
memory, resulting in a quicker decay of the autocorrelation function and smaller values of
both τzc and τe. The őltering process proved to emphasize the memory, or persistence, of
the signal, making the relationship between the DFA features the ACF more evident.
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The embedded dimension obtained using the False Nearest Neighbors algorithm proved
to be uncorrelated to other features for the raw signal. For the őltered signal, correlation
could not be calculated, since all m values were the same across all signals. Derivative
signal, however, showed high correlation of both mzc and me to power features. It means
that with greater power of a signal, number of dimensions needed to reconstruct its phase
space increases.

The Largest Lyapunov Exponent proved to be negatively correlated to the DFA mea-
sures for the raw signal, and did not exhibited signiőcant correlations in either őltered or
derivative signals. The high-amplitude low-frequency component in the raw signal can be
understood as a guiding structure, ensuring that points close in knee joint movement phase,
also remain proximate in phase space. That results in a reduced sensitivity to initial con-
ditions, leading to lower LLE values. Furthermore, this guiding structure also makes the
signal exhibit long-range correlations, which is reŕected in a higher Hurst exponent. How-
ever, when this low-frequency component is removed through őltering or differencing, both
the long-term correlations, measured by the Hurst, mass and singularity exponents, and the
chaotic behavior, measured by the LLE, are signiőcantly altered.

The Correlation Dimension feature showed positive correlations to power features of the
derivative signal. It can be explained by the fact, that the power of the derivative signal,
primarily emphasizing high-frequency ŕuctuations, is directly tied to its complexity. As this
power increases, so does the complexity, leading to a positive correlation with the CD feature.

The Recurrence Quantiőcation Analysis measures did not show major correlations with
other features within the raw and the derivative signals. However, for the őltered signal, they
proved to be positively correlated to Detrended Fluctuation Analysis measures and negatively
correlated to the ZCR. The positive correlation between RQA measures and the Hurst,
mass and singularity exponents suggests that the removal of speciőc frequency components
might expose some underlying recurrent nature of the signal, that aligns with its long-range
dependence. The negative correlation with the ZCR is not surprising. It indicates that that
high-frequency ŕuctuations are inversely related to the recurrence and determinism of the
signal. Those relations, however, seem to be masked in both raw and derivative signals.

Embedding entropy measures, i.e., the Approximate Entropy and the Sample Entropy
measure unpredictability of the signal. In the raw vibroarthrogram, the ApEn showed neg-
ative correlation to the Hurst, mass and singularity exponents, indicating that stronger
long-term correlation within the signal is inversely proportional to its unpredictability. On
the other hand, variability measured by the MoAD feature, proved to be positively correlated
with ApEn.

Correlations between features across the preprocessing approaches were included in Fig-
ures 10.36 (for the raw and the őltered signals), 10.37 (for the raw and the derivative signals),
and 10.38 (for the őltered and the derivative signals).

Power measures of the raw signal proved to be negatively correlated to the Correlation
Dimension of the őltered signal. It indicates that as the raw signal becomes more energetic,
the őltered signal exhibits a reduction in complexity. The őltering process may be simplifying
the inherent dynamics of the signal, reducing its dimensionality. In other words, higher
energy components in the raw signal may correspond to features that, once őltered, reduce
the diversity or complexity in the őltered signal’s structure.

The Mean of Absolute Differences and Hjorth’s mobility of the raw signal showed negative
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Figure 10.36: Correlation of time-domain features between the raw (y-axis) and the őltered
(x-axis) signals.

correlation to the Hurst, mass and singularity exponents calculated for the őltered signal.
When the raw signal has greater variability, the őltered signal tends to exhibit lower long-
term memory. The őltering process, therefore, seem to remove components in the raw signal,
that contribute to long-term memory when the raw signal has larger absolute differences.
It means, that low-frequency high-amplitude component of the raw signal may not be the
only factor determining the persistence characteristics of the őltered signal. Instead, the
high-frequency components of the raw signal also play some role in shaping its post-őltering
long-term memory characteristics. On the other hand, Hjorth’s complexity proved to be
positively correlated to the DFA measures of the őltered signal. In can seem unintuitive,
given the previously mentioned relationship. However, it indicates that while immediate
ŕuctuations in the raw signal can inŕuence long-term persistence post-őltering, the overall
complexity of the raw signal, as quantiőed by Hjorth’s complexity, also has a signiőcant
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impact on how the őltered signal’s memory properties are preserved.
The Hurst, mass, and singularity exponents of the raw signal seem to be positively corre-

lated to the same measures of the őltered signal. In other words, the memory characteristics
inherent in the raw signal are preserved to a certain extent in the őltered signal. On the other
hand, the same measures of the raw signal are negatively correlated to its post-őltering power.
In other words, a raw signal with a higher degree of long-term dependencies or persistence
results in a őltered signal with reduced energy. This can be explained by the low-frequency
component of the raw signal, that contributes to its long-term memory measured by the
DFA features. Since it is also quite high-amplitude, when it gets removed in the őltering
process, the resulting power features are reduced. Intuitively, the bigger the low-frequency
component, the more power is lost in the őltering process.

The Largest Lyapunov Exponent of the raw signal positively correlates with the power
of the őltered signal, while negatively correlating with its Hurst, mass and singularity expo-
nents. Those results reveal that as the raw signal becomes less deterministic (higher LLE
values), the corresponding őltered signal’s energy increases, suggesting that chaotic compo-
nents in the raw signal directly contribute to the energy in the őltered version. However,
this increase in chaotic behavior reduces the long-term memory features of the őltered sig-
nal. This indicates that the őltering process modiőes the chaotic characteristics from the
raw signal in such a way that it reduces long-term dependencies in the őltered domain while
enhancing its overall power.

The general patterns in the correlation between the raw and the derivative signal are
similar to the raw-őltered correlations. There are some interesting differences, however. The
Mean of Absolute Differences, as well as Hjorth’s mobility, and the ZCR feature showed
high correlation with the derivative signal power. It is not really surprising, since the MoAD
of the raw signal has exactly the same deőnition as the Rectiőed Average of the derivative
signal. Less obvious positive correlations can be observed between the embedded entropy
measures of the raw signal and the derivative signal power. It suggests that the differentiation
magniőes the power traits tied to a signal’s inherent irregularities. On the other hand,
negative correlation between the Hjorth’s complexity of the raw signal and the power of
the derivative signal can be observed. Hjorth’s complexity measures the signal’s frequency
composition in relation to its waveform’s shape. A higher complexity value implies a signal
that has diverse frequency components. When such a signal is differentiated, low-frequency
components get reduced, yielding derivative signal of lowered power.

Correlation between the őltered and the derivative signals’ power features seem to be
positive, though not extremely high. Both őltering and differentiating modify a signal’s fre-
quency content, reducing its low-frequency component. The fact that a moderate correlation
exists implies that this low-frequency component has considerable power, as expected from
previous discussions.

Positive correlation was also observed between the derivative signal’s simple statistical
shape features and the power of the őltered signal. This result indicates that with increased
variability of the derivative signal, power of the őltered signal also increases. It is quite
intuitive result, given that the variability of the derivative signal is proportional to high-
frequency content of the raw signal. Since this content is preserved by the őlter, it contributes
to the resulting signal’s power. On the other hand, negative correlation was observed between
the Hurst, mass and singularity exponents of the derivative signal and the power of the
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Figure 10.37: Correlation of time-domain features between the raw (y-axis) and the derivative
(x-axis) signals.

őltered signal. The DFA measures of the derivative signal represent its long-term memory.
Higher values in this context suggest more pronounced long-term dependencies in the raw
signal that may predominantly lie above 1000 Hz range, making them ampliőed by the
differentiation process and reduced by the őltering. When these dependencies are strong,
the signal post-őltering has lesser power. And inversely, when the DFA measures calculated
from the derivative signal are lower, indicating less pronounced long-term characteristics, the
power of the signal post-őltering tends to be greater. This suggests that when rapid changes
and short-term dynamics are more prominent in the raw signal (reŕected in a lower Hurst
value of the derivative signal), power within the 50-1000 Hz range is more signiőcant after
őltering.

Finally, the DFA measures proved to be positively correlated between the őltered and
the derivative signals. This further conőrms that certain aspects of long-term memory or
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Figure 10.38: Correlation of time-domain features between the derivative (y-axis) and the
őltered (x-axis) signals.

persistence present in the signal’s structure are retained across both differentiation and
őltering. That is, if a signal displays pronounced long-term dependencies post-differentiation,
these attributes are similarly evident post-őltering. It highlights the robustness of the DFA
measures, as their characteristics seem to be consistent across all preprocessing approaches.

10.7 Summary

In summary, for each preprocessing approach, 79 main features were extracted. While some
of these were singular scalar values, others were calculated for multiple parameters, leading
to a cumulative count of 3142 distinct features for each preprocessing approach.

Statistical features, i.e., features that are calculated for a signal’s values without consid-
ering their temporal order, turned out to be relatively informative. Power features of the
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vibroarthrogram increase with progressing knee joint conditions, achieving highest values
for the cmp3 and oa classes. Since VAG signals are symmetrical along the y-axis, the same
pattern can be observed in spread features.

From the simple statistical shape measures, the k-nn entropy estimator calculated for
the őltered signal proved to be highly informative, without great inŕuence of k on the infor-
mativeness, at least in the 1 to 5 range. Similarly to power measures, this entropy increases
with progressing knee joint conditions. The Log Energy Entropy, despite being calculated
qualitatively different, also achieved high informativeness and proved to be highly correlated
with k-nn entropy estimator. Complex shape measures did not show high informativeness.

Rolling features also scored relatively low informativeness scores. Inŕuence of the win-
dow size on the informativeness turned out to be limited for most features. For the VMS
calculated for őltered signal, window size of the highest informativeness proved to be around
2 ms, which is signiőcantly shorter than commonly used in literature.

Time-domain frequency features achieved relatively high informativeness, with the high-
est being the Mean of Absolute Differences feature calculated for the őltered signal. Similarly
to previously mentioned features, MoAD increased with progressing knee joint condition.
The Zero Crossing Rate feature proved to be most informative in the derivative signal con-
text, calculated for threshold of around 10 percent of the signal’s standard deviation. Similar
threshold was most informative for the Turns Count Rate of the őltered signal. Both features
proved to be positively correlated to each other and negatively correlated to the power of
the őltered signal. Therefore, they can be expected to decrease with progressing knee joint
conditions.

Features deőned using the Autocorrelation Function proved to be mostly uninformative,
with moderately informative exception of the Autocorrelation Function Turns Count Rate
feature calculated for the derivative signal. Because of its positive correlation with both
derivative signal’s ZCR and őltered signal’s TCR, as well as negative correlation with őltered
signal power and spread features, it can be expected to decrease with progressing knee joint
conditions.

The Multifractal DFA features proved to be most informative for both q and m orders
equal to one, calculated for the raw signal. With those parameters, with progressing knee
joint conditions, the Hurst exponent proved to decrease.

From the RPS features, the Largest Lyapunov Exponent of the raw signal showed highest
informativeness, calculated for the phase space reconstructed using őrst-zero-crossing method
of obtaining the time delay. The feature proved to increase with progressing knee joint
conditions. Measures derived from the Recurrence Quantiőcation Analysis did not show
high informativeness in the analyzed context.

Embedded entropy measures showed relatively high informativeness in the raw signal
context, for high r values (r = 0.75 for the ApEn and r = 1.0 for the SampEn) and m equal
to 10. Both measures calculated for the r parameter maximizing the entropy value proved
to be of rather low informativeness.



132 CHAPTER 10. TIME DOMAIN FEATURES

10.8 Conclusions

From the conducted time-domain analysis of VAG signals, following conclusions can be
derived.

1. From the implemented approaches, őltering seem to be the most informative prepro-
cessing for time-domain feature extraction.

2. Features, which deőnition is based on proximity of points or sub-signals, seem to gain
considerable class differentiating power when the low-frequency component of the signal
is kept. It could be attributed to knee joint movement phase localization capabilities
of the low-frequency component.

3. In general, with increasing degeneration of the knee joint, variability and power of
the signal increases. At the same time, decreasing of features measuring long-range
correlations can be expected.

4. Further research could beneőt from őrst őltering the VAG signal, and the augment-
ing it with movement-phase information, derived from the VAG signal itself (its low-
frequency component) or additional external sensor (such as goniometer).

5. In the current study, őltering approach was chosen based on the literature. Further
research could beneőt from analyzing informativeness of the features, based on different
őltering frequency bands.



Chapter 11

Frequency domain features

In this chapter, results of the frequency analysis will be provided and discussed. Similarly
to previous chapter, for the most informative features, their boxplots will be provided. The
chapter will begin with the PSD estimation methods comparison. Then, features obtained
using the FRM approach will be discussed, followed by features not following that methodol-
ogy. Next, correlations between speciőc features will be discussed. The chapter will end with
a summary and conclusions which can be derived from the conducted frequency analysis.

11.1 Estimation of the Power Spectral Density

To compare Power Spectral Density estimation methods, 22 Frequency Range Maps were
obtained using each method. Then, informativeness of each feature in each FRM was de-
termined. Next, the best feature from each FRM and for each PSD estimator was chosen.
Finally, for each PSD estimator, the best features were ranked according to their informa-
tiveness. For example, for the Fmax feature, Welch method with 215 window size provided
most informative feature, achieving rank 1. Second most informative feature was obtained
using Multitaper method with n = 15, achieving rank 2, etc. For the PVn feature, the
Welch method with 214 window size proved to be most informative, achieving rank 1. Such
ranking was created for each feature. Average rankings per PSD estimation methods, across
all features, were provided in Table 11.1. Columns named period, w512, w1k, w2k, w4k,
w8k, w16k, w32k, mt3, mt7 and mt15 correspond to the following PSD estimation methods,
respectively: the periodogram, the Welch method with window sizes of 29, 210, 211, 212, 213,
214, and 215, and the Multitaper method with n = 3, n = 7 and n = 15. Full tables, including
the informativeness of the best feature per FRM, per PSD estimation method, were included
in Appendix A.

Table 11.1: Average rankings of the Power Spectral Density estimation methods.

preprocessing period w512 w1k w2k w4k w8k w16k w32k mt3 mt7 mt15

raw 6.09 4.95 4.77 4.77 3.73 9.09 5.32 5.82 5.82 8.09 7.55

őlter 6.95 5.91 6.36 6.82 5.82 6.86 3.59 7.86 4.64 5.50 5.68

difference 5.73 6.45 5.59 6.32 6.55 7.41 2.50 7.82 5.23 5.91 6.50

average rank 6.26 5.77 5.58 5.97 5.36 7.79 3.80 7.17 5.23 6.50 6.58

In the Table 11.1, average rankings for each preprocessing method were included. In
the last row, average rank across all preprocessings was added for easier analysis. In the
context of this work, the best Power Spectral Density estimation method proved to be the
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Welch method, with window size of 214 (16384) samples. Therefore, it was used for the
frequency feature extraction, including Frequency Range Maps with greater resolution, as
well, as features not following the FRM methodology.

11.2 Frequency Range Maps

In Figure 11.1, a summary of the FRM distribution features’ informativeness was provided.
Similarly to barplots of time-domain features analyzed in the previous chapter, two bars are
provided for each feature: the most and the least informative feature in a given set.

Figure 11.1: Informativeness of the Frequency Range Map distribution features.

In Figure 11.2, the Frequency Range Maps of the Fmax were provided. For this feature,
the most informative preprocessing approach seems to be the differentiation. Despite its
high-pass őltering characteristics, the lowest coefBMC values can be found in rather low
frequencies, i.e., the left part of the FRM, with the most informative range being from 0 to
130 Hz. Similarly low frequencies were found to be most informative for the raw and őltered
signals, with 30 to 240 Hz and 0 to 100 Hz, respectively. For the raw and the őltered signals,
characteristic vertical lines can be spotted, indicating that the lower frequency has a greater
inŕuence on informativeness of the feature. Those lines are not present in the derivative
signal FRM. It can be explained by the deőnition of the Fmax feature. Energy of VAG
signals is mostly contained in the lower frequencies of the spectrum. Therefore, for most
ranges, the peak value can be found in lower frequencies in the given range. Considering
wider spectrum, therefore, does not change the frequency value, at which the peak is found,
rendering its information content identical to narrower frequency range. The differentiation,
however, increases power of the higher frequencies, minimizing this phenomenon.

Figure 11.3 includes FRMs of the actual non-normalized power of the peak value in a
given range. Maps for all preprocessings look very similar, and in all three, almost the
same ranges seem to be the most informative: from 220 to 270 Hz (with an exception for
the derivative signal, for which the lower frequency is 10 Hz smaller). Different pattern
seems to emerge from the relative-normalized part of the PSD. Maps for this feature were



11.2. FREQUENCY RANGE MAPS 135

Figure 11.2: Frequency Range Map of the Fmax feature.

Figure 11.3: Frequency Range Map of the PVn feature.

included in Figure 11.4. The raw signal proved to be most informative, with the lowest
coefBMC of around 0.79. It was scored for lower frequency range than the PVn, i.e., from 100
to 140 Hz. In general, for all maps generated for the PVr, the best features were obtained
for much lower frequency ranges compared to the PVn. And the informativeness of the
relative-normalized spectrum was, in general, much lower compared to non-normalized one.
Even lower informativeness was obtained for the self-normalized part of the PSD, FRMs of
which were included in Figure 11.5.

Figure 11.4: Frequency Range Map of the PVr feature.

Peak value of the self-normalized PSD, or the Spectral Crest Factor, scored the lowest
coefBMC values for the raw signal, calculated for almost the whole frequency spectrum.
Achieving coefBMC of around 0.81, it proved to be not very informative, compared to non-
or relative-normalized parts of the spectrum. In all thee peak value FRMs, in the raw and
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Figure 11.5: Frequency Range Map of the PVs (Spectral Crest Factor) feature.

őltered preprocessing approaches, vertical lines similar to the Fmax feature can be found.
They can be attributed to the same causes, i.e., the general decrease of power in higher
frequencies of the VAG signal. Also, in all four features, i.e., the Fmax and differently deőned
peak values at this frequency, lower frequency ranges proved to be much more informative
than the higher ones. This effect is the most pronounced in the non-normalized PSD.

Boxplot of the most informative feature, i.e., the Peak Value of the non-normalized PSD
in the 230-270 Hz range calculated for the őltered signal, was provided in Figure 11.6. Clearly,
power in this range increases with progressing knee joint condition. Similarly to time-domain
features, the most difficult classes to differentiate are healthy and cmp1, and the cmp3 and
oa.

Figure 11.6: Boxplot of the Peak Value of the non-normalized Power Spectral Density feature
calculated for the őltered signal.

Figure 11.7 includes Frequency Range Maps for the Spectral Median feature. Again,
similar ranges proved to be the most informative in all preprocessing approaches, with the
lower frequency ranges being more informative compared to the higher ones. Derivative signal
proved to allow extraction of the most informative feature, with the coefBMC of around 0.74.
Similar maps, included in Figure 11.8, were created using the Spectral Centroid feature. It
proved to be slightly more informative compared to the Spectral Median, but nevertheless,
it provided very similar results. It is not really surprising, given their deőnitions.

Speciőc values of both Spectral Median and Spectral Centroid in the most informative
frequency ranges, in the form of boxplots, were included in Figures 11.9 and 11.10, respec-
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Figure 11.7: Frequency Range Map of the Spectral Median feature.

Figure 11.8: Frequency Range Map of the Spectral Centroid feature.

tively. With progressing knee joint conditions, the Spectral Median increases, indicating that
in the 0-120 Hz range, higher frequencies are more pronounced in the more degenerated knee
joints. This phenomenon was emphasized by the differencing operation, allowing power in
lower and higher frequencies to be more comparable to each other. Very similar trend can
be observed in the boxplot of the Spectral Centroid feature. Note, however, that the speciőc
frequencies are slightly different. For example, the median value of the Spectral Median for
the control class is about 20 Hz, while the Spectral Centroid is above 30 Hz. This can be
caused by the fact, that the boxplot of the Spectral Centroid was obtained for slightly wider
range. However, it could also indicate non-zero Spectral Skewness of the given frequency
range.

Figure 11.9: Boxplot of the Spectral Median feature calculated for the derivative signal.
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Figure 11.10: Boxplot of the Spectral Centroid feature calculated for the derivative signal.

The Spectral Spread around the Centroid was used to generate FRMs included in Fig-
ure 11.11. Both differentiation and őltration seem to signiőcantly decrease informativeness
of the signal, with the most informative feature being calculated for the 0 to 360 Hz range
of the raw signal. Boxplot of this feature was provided in Figure 11.12. Clearly, spread in-
creases with progressing knee joint conditions, indicating that the distribution of the spectral
components widens, suggesting greater variability and dispersion in the signal’s frequency in
the 0 to 360 Hz range.

Figure 11.11: Frequency Range Map of the Spectral Spread feature.

Figure 11.12: Boxplot of the Spectral Spread feature calculated for the raw signal.
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Frequency Range Maps generated using the Spectral Skewness feature were included
in Figure 11.13. Interestingly, patterns of informativeness seem similar to those of the
Spectral Median and Centroid. The most informative preprocessing approach proved to
be differentiation, with the same range as the Median, i.e., from 0 to 120 Hz. Boxplot of
this feature was included in Figure 11.14.

Figure 11.13: Frequency Range Map of the Spectral Skewness feature.

Figure 11.14: Boxplot of the Spectral Skewness feature calculated for the derivative signal.

Spectral Skewness seem to decrease with progressing knee joint conditions. For the
control group, it proved to be mostly positive (median above positive one), as expected from
the discrepancy between the Spectral Median and Centroid mentioned earlier. For the oa
class, however, it proved to be negative (median around negative one). Note, that both
Spectral Median and Centroid increased with progressing conditions. Apparently, however,
the rates of those increases differed: Spectral Centroid increased slower than the Spectral
Median, rendering the Spectral Skewness negative. It indicates that with progressing knee
joint conditions, frequency range from 0 to 120 Hz in the derivative signal, seem to have
differently distributed power, shifting more towards the higher frequencies.

Frequency Range Maps of the Spectral Kurtosis feature were provided in Figure 11.15.
Compared to other features, it proved to be moderately informative. It indicates that the
"ŕatness" of the PSD does not vary greatly across the knee joint conditions. Greatest
differentiation was obtained in the 0 to 330 Hz range, for the raw signal, scoring coefBMC of
around 0.81. Interestingly, in the derivative signal’s FRM, increase in informativeness can
be seen for wide frequency range, i.e., in the upper-left part of the map.
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Figure 11.15: Frequency Range Map of the Spectral Kurtosis feature.

Barplot summary of the power features’ informativeness was included in Figure 11.16. In
general, they seem more informative compared to the distribution features, with the lowest
coefBMC of around 0.69 being scored by the geometric mean.

Figure 11.16: Informativeness of the Frequency Range Map power features.

Figure 11.17 includes Frequency Range Maps of the Average Power feature calculated for
the non-normalized PSD. The most informative feature was extracted from the raw signal,
scoring coefBMC of around 0.7 for the relatively wide range of 80 to 1780 Hz. However,
in general, lower frequency ranges seem more informative than higher ones, with the lower
part of the map being visibly darker compared to the right part. This pattern is clear in
both raw and őltered signals. Derivative signal, on the other hand, seem to produce highly
informative features only in lower-left part of the map. Since power of the VAG signals is,
in general, concentrated in lower frequencies of the spectrum, features calculated for the
raw and őltered signals are similarly informative when they include lower frequencies, with
inclusion of higher frequencies being of little difference to the information content, at least
in the given context. Since difference works like a high-pass őlter, it can be observed that
those higher frequencies do not carry much information, even when ampliőed.

Boxplot of the most informative non-normalized Average Power feature, i.e., calculated
for the raw signal in 80 to 1780 Hz frequency range, was included in Figure 11.18. Clearly,
power increases with progressing knee joint conditions, being close to 0 for most signals from
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Figure 11.17: Frequency Range Map of the Average Power (non-normalized) feature.

control group, and achieving the highest values for both cmp3 and oa classes. Note, however,
that difference between those classes is very low, with coefB of 0.95.

Figure 11.18: Boxplot of the Average Power of the non-normalized Power Spectral Density
feature calculated for the raw signal.

Frequency Range Maps calculated for the Average Power of the relative-normalized PSD
were included in Figure 11.19. Informativeness of the relative-normalized power features is
generally lower than their corresponding non-normalized versions. Again, the most informa-
tive feature was extracted for the raw signal, with the coefBMC of around 0.79. Interestingly,
for the őltered signal, range of 0 to 10 Hz proved to be the most effective discriminator be-
tween classes. Note, that this range is below pass-band of the őltering (from 50 to 1000 Hz).
It may seem counterintuitive that, after the őltration, any frequencies outside the pass-band
contain any information at all. Note, however, that the őltering does not remove frequency
components outside the pass-band completely, just reduces their amplitude (see upper part
of Figure 4.1).

Map generated for the derivative signal seem to be the most different to its non-normalized
equivalent. Speciőcally, whole left part of the map seem informative, not only the lower-left.
Observed patterns, however, can be explained similarly. In the non-normalized PSD, higher,
non-informative frequencies were largely inŕuencing the average power feature, rendering it
uninformative. In the relative-normalized PSD, however, their inŕuence was reduced by the
normalization. In other words, frequency ranges containing highly-informative low frequen-
cies keep their information content even after being "contaminated" with now high-amplitude
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higher frequencies, when being considered relatively to the whole spectrum. Nevertheless,
the most informative feature calculated for the derivative signal can be considered rather
uninformative, scoring coefBMC of 0.86.

Figure 11.19: Frequency Range Map of the Pr feature.

In Figure 11.20, Frequency Range Maps for the geometric mean feature of the non-
normalized PSD were included. All three maps look very similar, with the lower-left part
of the map being the most informative. The geometric mean, deőned as the n-th root
of the product of n power values, has a great sensitivity to low values, especially those
approaching zero. It means that even slight variations in the low-amplitude power values can
signiőcantly inŕuence its outcome. On the other hand, while values of the higher-amplitude
power contribute to its increase, they do not greatly skew it, rendering the geometric mean
relatively robust against high amplitude outliers.

Figure 11.20: Frequency Range Map of the Gn feature.

The consistent informativeness of the feature across the preprocessing approaches can
indicate that it captures robust characteristics of the VAG signal in the frequency domain.
Moreover, the captured features are consistently contained in the lower frequency ranges,
generally below 1 kHz. High-frequency low-amplitude parts of the PSD proved to be unin-
formative in the given context. It might seem that it can be attributed to the deőnition of
geometric mean and its sensitivity to low-amplitude values. When just one frequency in the
calculated range has a power of 0, the geometric mean itself also becomes zero, rendering it
extremely uninformative for the ranges containing zero or near-zero values. However, even
narrow frequency ranges (closer to the diagonal than to the y-axis) proved to contain low
information content. Therefore, it can be concluded, that the higher frequencies generally
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do not contain much information speciőc to classes analyzed in this work, at least when their
absolute, i.e., non-normalized values are considered.

After the normalization, some higher frequencies became slightly more informative. Fre-
quency Range Maps calculated for the geometric mean using relatively-normalized and self-
normalized PSD were provided in Figures 11.21 and 11.22, respectively. Similarly to the
arithmetic mean, the relatively-normalized maps of the geometric mean seem generally much
less informative compared to non-normalized ones, especially in lower, more informative fre-
quency ranges. Similarly to their non-normalized equivalents, all three maps seem to be
much less informative in higher frequency ranges. While the difference in informativeness
between lower and higher frequency ranges seem lower in the geometric mean calculated for
the relative-normalized PSD, higher frequencies can still be considered rather uninformative.

Figure 11.21: Frequency Range Map of the Gr feature.

Interestingly, in case of the self-normalized spectrum, FRMs for which were included in
Figure 11.22, wider frequency ranges, i.e., upper-left parts of the FRMs, proved to be of
relatively high information content. Note, however, that values of coefBMC in those regions
are still rather high. This pattern is mostly visible in the raw signal, in ranges with lower
frequency of around 200 Hz to 1 kHz and upper frequency above around 2 kHz. When
the frequency range is self-normalized, values in ranges that do not include high-amplitude
low-frequency components are not so much diminished, rendering the geometric mean less
contaminated by low-amplitude noise and more informative in the context of this work.

Figure 11.22: Frequency Range Map of the Gs (Spectral Flatness) feature.

Boxplot of the most informative geometric mean feature, i.e., the one calculated using
non-normalized PSD for the raw signal in the 0 to 350 Hz frequency range, was provided in
Figure 11.23.
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Figure 11.23: Boxplot of the Geometric Mean Power of the non-normalized Power Spectral
Density feature calculated for the raw signal.

Clearly, power of the VAG signal in 0 to 350 Hz frequency range increases with progressing
knee joint conditions, being close to zero in the control group, and above 2 V 2

Hz
·10−4 in the oa

group. It indicates, that with more degenerated knee joints, PSD in this range consistently
increases, i.e., not in just some sub-range of this frequency, but rather in most frequency
components included in this range.

The FRMs for Root Mean Square values of the non-normalized, relatively-normalized,
and self-normalized PSD were included in Figures 11.24, 11.25, and 11.26, respectively. Since
calculation of the RMS includes squaring operation, it is sensitive to large-amplitude power
values: large values squared become larger, while small values become even smaller. In this
regard, the RMS can be considered opposite of the Geometric Mean. In the FRMs generated
for the non-normalized PSD, patters seem similar to those found in the Average Power (see
Figure 11.17). In both raw and őltered signals, small-amplitude high-frequency components
do not contribute much to the value of RMS and therefore informativeness is mostly de-
pendent on the high-amplitude low-frequency components, causing visible vertical lines of
high informativeness. After the differentiation, high-frequency components are ampliőed,
and including them in the calculation of the RMS can signiőcantly decrease its information
content, rendering wider frequency ranges less informative.

Figure 11.24: Frequency Range Map of the RMSn feature.

In the FRMs calculated using RMS of the relatively-normalized PSD (Figure 11.25),
the vertical informativeness pattern emerges additionally in the derivative signal. After
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the normalization, frequency ranges containing higher frequencies (upper part of the map)
become more informative compared to the non-normalized PSD. It indicates that for the
derivative signal, power of the wider frequency ranges is more informative in the context
of the entire spectrum. Nevertheless, informativeness of the RMS feature in the relative-
normalization setup proved to be rather low for all preprocessing approaches.

Figure 11.25: Frequency Range Map of the RMSr feature.

Even smaller informativeness was observed in the self-normalized FRMs (Figure 11.26),
with an exception for the raw signal, whose most informative feature proved to achieve a
little lesser coefBMC value compared to its relative-normalized version.

Figure 11.26: Frequency Range Map of the RMSs (Spectral Form Factor) feature.

Informativeness analysis of the power features in this work indicated that normalization of
the Power Spectral Density estimate generally seem to reduce informativeness of the features,
for all preprocessing approaches. It is rather unexpected result, given that in earlier frequency
analysis of the VAG signals conducted by Befrui et al. [75], normalization of the spectrum led
to signiőcantly increased informativeness. It can be explained by different frequency analysis
approach utilized in [75], in which multiple spectra were obtained for the signal divided into
segments, and then averaged.

Barplot summary of the PSD shape features’ informativeness was provided in Figure 11.27.
The most informative feature proved to be Spectral Slope, which FRMs were included in
Figure 11.28.

Across the preprocessing approaches, the Spectral Slope proved to be the most infor-
mative when lower frequencies were included in its calculation. See signiőcantly lower
coefBMC values in the left part of all maps, the most clearly visible in raw and őltered
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Figure 11.27: Informativeness of the Frequency Range Map shape features.

signals. Above around 500 Hz of the higher frequency, informativeness does not change sig-
niőcantly, as long as the lower frequency is kept below around 200 Hz. Preprocessing did not
signiőcantly altered this pattern. However, derivative signal provided the least informative
features. It can be explained by its ampliőcation of higher frequencies, which, when measur-
ing the Spectral Scope, lowered informativeness. Boxplot of the most informative Spectral
Scope was provided in Figure 11.29.

Figure 11.28: Frequency Range Map of the Spectral Slope feature.

Clearly, Spectral Scope in the 80 to 3390 Hz decreases signiőcantly with progressing knee
joint conditions. For the healthy and cmp1 classes, slope is slightly negative, but close to
zero. It achieves the lowest values for both cmp3 and oa classes, which can be explained by
increased power of lower frequencies with progressing knee joint degeneration. Note, in the
boxplot of the Average Power feature calculated for the raw signal in 80 to 1780 Hz range
(Figure 11.18), that power measured in almost exactly half of the lower range of the Spectral
Slope’s range, proved to increase with progressing conditions.

Feature similar to Spectral Slope, i.e., the Spectral Decrease, proved to be much less
informative, with lowest coefBMC of around 0.82 achieved by the derivative signal. Its
Frequency Range Maps were provided in Figure 11.30. See, that similar pattern of high
informativeness emerged for the features calculated including lower frequencies. However,
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Figure 11.29: Boxplot of the Spectral Slope feature calculated for the raw signal.

compared to the Spectral Slope, relatively high informativeness was achieved, when the lower
frequency of the range was not greater than around 100 Hz.

Figure 11.30: Frequency Range Map of the Spectral Decrease feature.

Frequency Range Maps of the Spectral Entropy feature calculated for the relatively-
normalized PSD were provided in Figure 11.31. Raw signal’s map show similar patterns
to previous features, that is, relatively high informativeness of ranges that include low fre-
quencies, i.e., with lower frequency up to about 300 Hz. Both őltered and derivative signals
proved to be much less informative, with the lowest coefBMC well above 0.8. Boxplot of the
feature with the lowest coefBMC was provided in Figure 11.32.

Figure 11.31: Frequency Range Map of the Hr feature.

Entropy of the relatively-normalized spectrum, measured in the 50 to 2240 Hz frequency
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range for the raw signal, seem to increase with progressing knee joint conditions. It means
that frequencies in this range become more evenly spread out, when the power values are
normalized relatively to the whole PSD. It might seem contradictory to previous analyzes,
which clearly showed that power increases in lower frequencies, which intuitively should
decrease the entropy: since power of the lower frequencies is greater, the signal should
become more predictable, or less uncertain. However, power in the higher frequencies could
inŕuence the entropy measure by becoming more spread out along the frequencies, while still
allowing decrease in Spectral Slope and increase in low-frequency power.

Figure 11.32: Boxplot of the Spectral Entropy of the relative-normalized Power Spectral
Density feature calculated for the raw signal.

Informativeness of the self-normalized PSD frequency ranges’ entropy was plotted in Fig-
ure 11.33. Clearly, in most part of all preprocessing approaches informativeness signiőcantly
decreased in comparison to the relative-normalization. One exception is the raw signal.
Again, inclusion of low frequencies, i.e., ranges with lower frequency not higher than around
20 Hz, seem to allow extraction of the most informative features. The lowest coefBMC was
achieved for the range of 10 to 2000 Hz, and its boxplot was provided in Figure 11.34. Gen-
eral tendency of the entropy calculated for the self-normalized range seem to be similar to
the relative-normalized one, i.e., increasing with the progressing knee joint condition.

Figure 11.33: Frequency Range Map of the Hs feature.

Frequency Range Maps of the last entropy feature, i.e., the Irregularity Index, were
provided in Figure 11.35. The Irregularity Index is deőned as the summation of the entropy of
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Figure 11.34: Boxplot of the Spectral Entropy of the self-normalized Power Spectral Density
feature calculated for the raw signal.

the relative-normalized range, and scaled entropy of the self-normalized range, divided by the
entropy of the entire PSD (see Table 6.3). General patterns observed in maps seem to closely
follow patterns seen in the relative-normalized Spectral Entropy feature (Figure 11.31). It
can be explained by the greatest inŕuence of this part of the deőnition. Informativeness of
the entire spectrum’s entropy (see the most upper-left point in the FRMs from Figure 11.31)
is quite low ( coefBMC of around 0.94), which means that it does not consistently vary
between analyzed classes, and has low inŕuence on the informativeness of the Irregularity
Index. Interestingly, in the raw signal, much narrower frequency range proved to be the most
informative: from 0 to 40 Hz. Boxplot of the Irregularity Index calculated for this range was
provided in Figure 11.36.

Figure 11.35: Frequency Range Map of the II feature.

Irregularity Index of the very low frequency range, i.e., from 0 to 40 Hz, seem to decrease
with the progressing knee joint degeneration. It can be explained by the disproportionate
increase in some speciőc frequency bin in the 0 to 40 Hz range, overshadowing other bins,
and decreasing the overall uncertainty, measured by the Irregularity Index.
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Figure 11.36: Boxplot of the Irregularity Index feature calculated for the raw signal.

11.3 Other frequency features

Figure 11.37 includes a barplot summary of the informativeness of frequency features, that
were obtained not following the FRM methodology. In general, those features do not seem
very informative. Detailed results of the ratio features were provided in Figure 11.38.

Figure 11.37: Informativeness of the frequency features not following the Frequency Range
Map methodology.

Clearly, informativeness of both ratio features seem very correlated within all preprocess-
ing approaches. The lowest coefBMC values were obtained for the high to low ratio of the raw
signal, with the frequency threshold of around 40 to 80 Hz. Much less information proved
to be extracted for the őltered and derivative signals. Boxplot of the most informative ratio
was included in Figure 11.39.

As expected, with progressing knee joint conditions, ratio of frequencies above to frequen-
cies below around 43 Hz decreases, indicating that power in the lower frequencies increases
much faster compared to the higher frequencies. Note, that this ratio is greater than 1 for
most signals in all classes, indicating that more power is contained in the upper part of the



11.3. OTHER FREQUENCY FEATURES 151

Figure 11.38: Detailed results of the frequency ratios’ informativeness.

PSD, no matter the knee joint group. It can be explained by the summation used in the def-
inition of the ratio. Since the threshold is relatively low compared to the Nyquist frequency,
power of the PSD is greater above the threshold. Nevertheless, as stated previously, power
in lower parts of the PSD seem to increase much faster compared to higher frequencies.

Figure 11.39: Boxplot of the High-to-Low ratio feature calculated for the raw signal.

Detailed results of the Spectral Roll-off features’ informativeness were included in Fig-
ure 11.40.

Figure 11.40: Detailed results of the frequency Roll-off Points informativeness.

In general, this feature proved to be of relatively low informativeness. For the raw
signal, the lowest coefBMC was achieved for the 98-th percentile, which is very close to
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95-th percentile used in the literature. It means, that the frequency below which most of
the signal power is contained is a somewhat decent class discriminator. However, for the
őltered signal, the dependence of the informativeness seem to follow the opposite trend. The
lowest coefBMC was achieved for the second percentile, and increased for higher percentiles,
achieving around 0.98 for the percentile that proved to be the most informative in the raw
signal. Differentiation turned out to lower informativeness of the Spectral Roll-off feature.
Boxplots of the 98-th and 2-nd percentiles of the raw and őltered signals were included in
Figures 11.41 and 11.42, respectively.

Figure 11.41: Boxplot of the Roll-off Point feature calculated for the raw signal.

For both raw and őltering preprocessing approaches, the Roll-off frequency seem to in-
crease with progressing knee joint conditions. For the 98-th percentile of the raw signal
(Figure 11.41), frequency increases from median value of around 20 Hz in control group to
around 150 Hz in the oa. This result complements previous results, indicating that the power
increases not only in lower frequencies, but along wider frequency range spectrum. Increase
in the Roll-off point, along with the previous results suggests that the signal increases in
power along wide frequency range, but lower ranges tend to increase more compared to
higher ones.

Figure 11.42: Boxplot of the Roll-off Point feature calculated for the őltered signal.

The Roll-off frequency calculated for the 2-nd percentile of the őltered signal seem to
vary across studied groups much less. It indicates frequency, below which 2 percent of the
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power spectrum is contained. It is expected, that this frequency is below 50 Hz for most
classes, since the őlter used in this work has relatively slow transitions between the pass-band
and stop-band (see Figure 4.1). Its increase with the progressing knee joint degeneration
conőrms that power generally increases in lower frequencies faster than higher ones.

11.4 Correlations of the features

Correlations of the most informative feature in each FRM, as well as the most informative
frequency ratios and Roll-off point, were provided in Figure 11.43. Only features obtained
for the raw signal were analyzed in such way, since őltering and differentiating operations
inŕuence the Power Spectral Density in relatively predictable ways. Note, that most FRM
features were extracted from different frequency ranges.

Figure 11.43: Correlation of frequency domain features obtained for the raw signal.

In the raw signal, the Fmax feature proved to be positively correlated with the non-
normalized and relatively-normalized Peak Values. Interestingly, correlation of those features
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with the self-normalized Peak Value proved to be negative. It indicates, that when the Peak
Value in non-normalized or relatively-normalized range increases, it decreases in the self-
normalized range. This decrease could be explained by the increase in all frequency bins in
a given range, rendering the prominent bin less prominent relative to other bins within this
range, especially when considering quite wide range, like 20 to 5000 Hz.

Slight positive correlations can be observed also for the non-normalized and relative-
normalized Peak Values with central tendency measures, i.e., the Spectral Median and Cen-
troid. Notably, positive correlation can be observed also for the Spectral Spread value,
conőrming, that more frequency bins increase along with the most prominent one.

Spectral Skewness and Kurtosis proved to be negatively correlated with the central mea-
sures, indicating that with the progressing knee joint conditions, distribution of power inside
the given frequency range becomes ŕatter and shifts towards higher frequencies.

All power features, except for the self-normalized PSD’s Root Mean Square, proved to be
more or less positively correlated. It further conőrms that progressing knee joint conditions
generally increase power in speciőc, narrow ranges, as well as wider ones. The negative
correlation of the Spectral Form Factor, or the self-normalized Root Mean Square, can be
explained by the faster increase of smaller amplitude values (measured by the arithmetic
average) compared to large amplitude ones (measured by the RMS), causing the Form Factor
to decrease when other power values increase.

Negative correlation of the Spectral Slope to the Peak Values, central tendency features,
as well as power features indicate, that with progressing knee joint conditions, power in
lower frequencies increases more compared to higher frequencies, lower and higher being
understood relatively to the frequency range of 80 to 3390 Hz. As expected, the Spectral
Decrease feature proved to be negatively correlated to the Spectral Slope. It can be explained
by their deőnitions: while the Spectral Slope measures slope of line őtted to the power in
the analyzed range, the Spectral Decrease measures how the power decreases compared to
the őrst frequency bin in the analyzed range (see Table 6.3).

Both Entropy features, i.e., calculated for the relatively- and self-normalized ranges,
proved to be positively correlated to the power, again, indicating that power increases in
multiple frequency bins. They also proved to be negatively correlated to the Spectral Kur-
tosis, which is expected: when the power distribution becomes ŕatter, the Spectral Kurtosis
decreases. That makes the distribution more uncertain, which causes the Entropy measures
to increase. Irregularity Index, however, also proved to decrease with progressing knee joint
conditions, which can be considered counterintuitive. Note, however, that it was calculated
in quite low frequency range: from 0 to 40 Hz. As mentioned earlier, it could indicate that
speciőc frequency bin in this range increased disproportionally to other bins, making distri-
bution in this speciőc narrow range more predictable, decreasing value of the Irregularity
Index.

Ratio of frequencies above to frequencies below around 43 Hz showed negative correlation
with power features, indicating that power in lower frequencies increases faster with degen-
eration of the knee joint. Since the other ratio was calculated for almost the same frequency
threshold, its positive correlation to the power features is expected. Spectral Roll-off fea-
ture, calculated for the 98-th percentile, also showed positive correlation to power features,
indicating that power increases in rather wide frequency range.
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11.5 Summary

In summary, a couple popular PSD estimation methods were compared, including the pe-
riodogram, the Welch method with varying window size, and the Multitaper method with
varying number of tapers. The Welch method, with window size of 214 samples, proved to
allow extraction of the most informative features. However, features’ informativeness did not
vary greatly across methods (see Appendix A). Estimated PSD was used for further feature
extraction.

For each preprocessing approach, i.e., the raw, the őltered and the derivative signal,
frequency analysis provided 22 sets of range-dependent features, called the Frequency Range
Maps, two frequency ratio sets and one set based on the Spectral Roll-off point. Each FRM
provided

(

501
2

)

= 125 250 features, both frequency ratios provided 8192 features, and the
Spectral Roll-off point provided 101 features. In summary, for each preprocessing, 2 771 985
frequency features were extracted, summing up to 8 315 955 features total.

Features deőned using extreme values, such as the frequency of the maximal value (Fmax)
and its actual values, absolute or normalized, proved to be relatively informative. For most
features, the lowest coefBMC was achieved in low frequency ranges, up to 500 Hz. The
non-normalized Peak Value proved to increase in 230 to 270 Hz range with progressing knee
joint conditions. The Fmax feature in 30 to 240 Hz range showed positive correlation to the
Peak Value, indicating that, in this range, progressing knee joint conditions make PSD to
be more concentrated around higher frequencies. Similar conclusions were drawn from the
Spectral Median and Spectral Centroid features, as well as the Spectral Skewness.

The Geometric Mean proved to be the most informative frequency power feature. When
measured in 0 to 350 Hz frequency range, it increased with progressing knee joint condi-
tions. However, in general, all power features showed similar increase in power. Between
the normalization methods, i.e., without normalization, with normalization relative to the
whole spectrum, and relative to the analyzed range of the PSD, features obtained for non-
normalized power proved to be the most informative.

The Spectral Slope calculated for the 80 to 3390 Hz frequency range decreased with pro-
gressing knee joint degeneration, indicating that power in lower frequencies of this range
increases faster compared to the higher frequencies. Spectral Decrease, being negatively
correlated to the Spectral Slope allowed to draw similar conclusions. Entropy features indi-
cated that in more degenerated knee joints, power is more spread out across the spectrum
when measured in wide frequency ranges. In narrow range of 0 to 40 Hz, however, the
Irregularity Index proved to decrease, indicating that one speciőc frequency bin increases
disproportionally faster to other bins.

Frequency ratio features proved to be relatively informative when deőned with frequency
threshold of around 43 Hz. They indicated that for progressing knee joint conditions, power
below this frequency grows much faster compared to the power above it. Spectral Roll-off
calculated for the raw signal proved to be the most informative when calculated for 98-th
percentile. Values of this feature in speciőc classes showed that with progressing knee joint
conditions, frequency of the Roll-off point shifts from around 20 Hz in the ctrl up to around
150 Hz in the oa.

After relatively detailed analysis of frequency ranges used in the FRMs, it would be
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beneőcial to somehow quantify how informative are speciőc frequency bins, i.e., from 0 Hz to
10 Hz, from 10 Hz to 20 Hz, up to 4990 Hz to 5000 Hz, but not understood separately. Rather,
how much information can each frequency bin bring to a wider range, that contains it. Such
analysis would enable better understanding of the information content across the frequency
domain1. This, in turn, would allow potentially better design of the őlter in the future
studies. In order to somehow reduce dimensionality of each FRM down to 2 dimensions,
i.e., the frequency bin and the informativeness, the following process has been implemented.
First, for each frequency bin of the FRM, mean coefBMC of all frequency ranges containing
this bin was calculated. Such a mean value could be understood as taking the average of
the rectangular area in the FRM, deőned using two points: (0, f) and (f, 5000), where f is
the frequency bin. That created a reduced curve of informativeness for each frequency bin
of the FRM. Then, the reduced curves for all FRMs were averaged. Figure 11.44 includes
this average, calculated for each preprocessing method separately, and additionally, their
average.

Figure 11.44: Average informativeness of the features calculated on ranges containing each
frequency bin.

Clearly, the average coefBMC scores proved to be the lowest for the raw signal. In terms
of frequency, all preprocessing approaches showed similar results: average informativeness is
the lowest for ranges from around 10 Hz up to around 350 Hz.

Another approach of showing information content of each frequency bin could be to
simply count the number of FRMs, in which given frequency bin was included in the most
informative frequency range. Such curve, with the frequency bin on the x-axis, and number
of FRMs on the y-axis, was included in Figure 11.45. The plot includes separate curves for
each preprocessing, as well as their sum.

Curves included in the Figure 11.45 allow to draw similar conclusions compared to Fig-
ure 11.44. Frequency bins included most frequently in the most informative frequency ranges
proved to span from around 10 Hz to around 350 Hz.

Those results indicate, that the VAG signals could be acquired with sampling frequency
much lower than 10 kHz, without great impact on the PSD’s informativeness. That could be

1Note, that the information content is understood in a context of this work only, and means ability to
differentiate between analyzed classes.



11.6. CONCLUSIONS 157

Figure 11.45: Number of the FRMs, in which given frequency bin was contained in the most
informative frequency range.

further conőrmed with the fact that some other VAG-related studies used sampling frequen-
cies of 1 kHz [37, 96, 114, 125] (see Table 3.3). Moreover, in VAG-related studies utilizing
őltering approaches, the most popular frequency bands are from 10 Hz to around 1000 Hz
(see Figure 3.3). In future studies, VAG signal could be őltered in range spanning from 10
to 350 Hz, potentially allowing more informative analysis also in time-domain.

11.6 Conclusions

The frequency analysis allowed for drawing the following conclusions.
1. From the compared Power Spectral Density estimation methods, Welch method with

214 window size, provided the most informative features.
2. In the context of this work, frequencies with the highest information content proved

to be in range of around 10 Hz to 350 Hz, indicating that the vibroarthrogram could
be acquired with sampling frequency much lower than 10 kHz.

3. With progressing knee joint deterioration:

• power of the VAG signal increased,

• that increase was observed in most frequency bins, yielding higher values of fea-
tures such as Spectral Spread or Entropy,

• lower frequencies generally increased faster than higher ones, yielding lower values
of Spectral Slope and Spectral Skewness.

4. With the frequency analysis based on the PSD estimation, analysis of the raw signal
provides the most informative features.

5. Both frequency range normalization methods, i.e., relative to the whole PSD or the
range itself, decreased informativeness of features extracted from it.

6. In future studies, time-domain analysis could be conducted on the signal őltered in
range from 10 Hz to 350 Hz.



Chapter 12

Time-frequency domain features

In this chapter, results of the time-frequency analysis will be provided. Since from each spec-
trogram (calculated for multiple parameters), 21 Spectral Fluctuation Signals were obtained
and summarized using 15 time features, complexity of the research can be considered com-
plex. Therefore, two őrst sections of this chapter will be devoted to analysis from frequency
and time perspective separately. For the most informative features, speciőc inŕuence of the
spectrogram’s parameters on the given feature will be discussed. In the following section,
average informativeness of all features will be explored, in the context of spectrogram pa-
rameters, i.e., the window size and overlap. The chapter will end with a summary of the
results and conclusions that can be derived from them.

12.1 Frequency perspectiveÐSpectral Fluctuation Signals

In this section, barplots of features extracted from each Spectral Fluctuation Signal will be
provided. Similarly to results provided in previous chapters, each bar shows two coefBMCvalues:
of the most and the least informative feature in a set. Here, each set is constructed by all
time features extracted for the given SFS, for all spectrogram parameters, summing up to
1650 singular values: 15 time features, times 11 window sizes of the spectrogram, times 10
overlap values.

Figure 12.1: Informativeness of all time features extracted from the Power Spectral Density
distribution SFSs, from the raw signal (upper plot), őltered signal (middle plot), and the
derivative signal (lower plot).

158
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Informativeness of the features based on the PSD distribution SFSs was provided in Fig-
ure 12.1. Compared to the frequency-only analysis using the same features, informativeness
is lower in most part. One exception is the Peak Value of the non-normalized spectrum.
Barplots of the speciőc time features extracted from this SFS were provided in Figure 12.2.

Figure 12.2: Informativeness of speciőc time features extracted from the non-normalized
Peak Value SFS, from the őltered signal.

Median and the Mean of Absolute Differences features achieved the lowest coefBMCvalues
for the PVn SFS. Visualization of those features’ dependance on the spectrogram parameters
was provided in Figure 12.3. A couple of interesting patterns can be observed. First, for
the median feature, higher values of the window size provide much lower coefBMC values. It
indicates, that the frequency resolution is more important compared to the time resolution,
when measuring median value of the PVn ŕuctuations. Note, however, that the median
calculated for small window sizes, i.e., below 64 samples, provided not completely uninfor-
mative features, achieving coefBMC of around 0.8. Medium-sized windows, between around
64 and 2048 samples, achieved the highest coefBMC , proving to be the least informative.

Figure 12.3: Informativeness of the non-normalized Peak Value SFS summarized by the
median (left) and MoAD (right) features, for varying spectrogram parameters.



160 CHAPTER 12. TIME-FREQUENCY DOMAIN FEATURES

Another interesting pattern emerges from the vertical axis of the plot. Clearly, higher
overlap values provide better informativeness scores. This pattern, although less obvious, is
also visible in the Mean of Absolute Differences feature. Dependance of the informativeness
on the window size, however, proved to be completely opposite compared to the median
value. It could be explained by the deőnition of the MoAD feature, which inherently mea-
sures temporal variability of the signal. Note, that with 16-sample wide window, frequency
resolution is only 625 Hz. Compared to the MoAD feature calculated on the őltered sig-
nal directly, i.e., in time domain, informativeness of the PVn SFS’s MoAD is worse. Here,
the lowest coefBMC proved to be around 0.71, while in the time domain, MoAD achieved
coefBMC of around 0.6.

Boxplots of the median and MoAD features calculated on the PVn Spectral Fluctuation
Signal were provided in Figures 12.4 and 12.5, respectively. The median clearly increases
with progressing knee joint conditions, indicating that the Peak Value, in general, grows. It
is not very surprising result, given analyzes described in the previous chapter. Perhaps more
interesting result is increasing value of the MoAD feature, indicating that with increased
power of the most prominent frequency bin, its variability in time also increases.

Figure 12.4: Boxplot of the Median feature extracted from the non-normalized Peak Value
SFS, calculated for the őltered signal.

Figure 12.5: Boxplot of the MoAD feature extracted from the non-normalized Peak Value
SFS, calculated for the őltered signal.
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In Figure 12.6 informativeness summary of the features extracted from the power SFS’s
was provided. The non-normalized Average Power, calculated from the őltered signal, proved
to be the most informative Spectral Fluctuation Signal. Barplot of the time features ex-
tracted from it was provided in Figure 12.7.

Figure 12.6: Informativeness of all time features extracted from the Power Spectral Density
power SFSs, from the raw signal (upper plot), őltered signal (middle plot), and the derivative
signal (lower plot).

Figure 12.7: Informativeness of speciőc time features extracted from the non-normalized
Average Power SFS, from the őltered signal.

Similarly to the non-normalized Peak Value, the Average Power was best summarized
by the median and the MoAD features. Visualization of their dependance on the spectro-
gram parameters was provided in Figure 12.8. Patterns observed, in general, also seem very
similar to the ones obtained for Peak Value. For the median feature, higher window sizes
provided better informativeness, while shorter window sizes were better suited for the in-
herently temporal MoAD feature. In both cases, higher values of the overlap provided more
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informative features. Boxplots of both median and MoAD were provided in Figures 12.8
and 12.9, respectively.

Figure 12.8: Informativeness of the non-normalized Average Power SFS summarized by the
median (left) and MoAD (right) features, for varying spectrogram parameters.

Figure 12.9: Boxplot of the Median feature extracted from the non-normalized Average
Power SFS, calculated for the őltered signal.

Again, clear similarity can be observed between the Peak Value and the Average Value
of the non-normalized PSD. Values of both median and MoAD features increase with pro-
gressing knee joint deterioration, indicating change in both power and its variability in time
domain.

Informativeness of the features extracted from the Spectral Fluctuation Signals based on
the PSD’s shape, was provided in Figure 12.11. Features, in general, proved rather mediocre
informativeness. The lowest coefBMC of around 0.7, was achieved by some feature of the
Spectral Slope calculated from the őltered signal. Barplots of all time features extracted
from this SFS were provided in Figure 12.12.

Yet again, the most informative time features proved to be the median and the MoAD,
achieving lowest coefBMC values of around 0.71 and 0.70, respectively. Their dependence on
the spectrogram parameters was visualized in Figure 12.13.
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Figure 12.10: Boxplot of the MoAD feature extracted from the non-normalized Average
Power SFS, calculated for the őltered signal.

Figure 12.11: Informativeness of all time features extracted from the Power Spectral Density
shape SFSs, from the raw signal (upper plot), őltered signal (middle plot), and the derivative
signal (lower plot). ∗ N stands for Normalized.

Interestingly, both plots seem almost exactly the same as the Average Power plots. Not
only in terms of general patterns, but also exact coefBMC values. Boxplots of the fea-
tures extracted for the most informative spectrogram setup, were provided in Figures 12.14
and 12.15, for the median and the MoAD features, respectively.

12.2 Temporal perspectiveÐTime features

In this section, barplots of time domain features extracted from all Spectral Fluctuation
Signals will be provided. Here, each bar is based on one time feature extracted for all SFSs,
for all spectrogram parameters, summing up to 2310 singular values: 21 SFSs, times 11
window sizes of the spectrogram, times 10 overlap values. In Figure 12.16 time features
based on the values’ distribution were provided.

In general, time domain distribution features are not very informative, in most part
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Figure 12.12: Informativeness of speciőc time features extracted from the Spectral Slope
SFS, from the őltered signal.

Figure 12.13: Informativeness of Spectral Slope SFS summarized by the median (left) and
MoAD (right) features, for varying spectrogram parameters.

Figure 12.14: Boxplot of the Median feature extracted from the Spectral Slope SFS, calcu-
lated for the őltered signal.
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Figure 12.15: Boxplot of the MoAD feature extracted from the Spectral Slope SFS, calculated
for the őltered signal.

Figure 12.16: Informativeness of speciőc time domain distribution features extracted from
all SFSs, from the raw signal (upper plot), őltered signal (middle plot), and the derivative
signal (lower plot).

achieving coefBMC scores well above 0.7. The most informative feature, as expected from
the results discussed in previous section, proved to be median of some SFS calculated for
the őltered signal. Barplots of speciőc SFSs summarized by the median were provided in
Figure 12.17.

As discussed in previous section, the Peak Value and the Average Power, both calculated
on the non-normalized PSD, as well as the Spectral Slope, proved to be the most informative
SFSs. However, the RMS value also scored quite low coefBMC . Other features turned out
to be of relatively low informativeness.

Barplots of the complex time domain statistical shape measures, of each SFS, were pro-
vided in Figure 12.18. All features proved to be of rather moderate informativeness, mostly
achieving coefBMC more than 0.8.

Informativeness summary of the time domain features actually based on the temporal
variation of values, per each SFS, was provided in Figure 12.19. The mobility, complexity and
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Figure 12.17: Informativeness of the median feature extracted from speciőc SFSs, from the
őltered signal.

Figure 12.18: Informativeness of speciőc time domain shape features extracted from all SFSs,
from the raw signal (upper plot), őltered signal (middle plot), and the derivative signal (lower
plot). ∗ N stands for Normalized.

Turns Count Rate features proved to be of rather moderate differencing potential, scoring
coefBMC between 0.74, for the Turns Count Rate of the derivative signal to around 0.87 for
the complexity for the same preprocessing approach.

The MoAD feature proved to be the most informative in the őltered signal, with the
coefBMC of around 0.7. As identiőed it the previous section, it was scored for the Spec-
tral Slope. Informativeness of the MoAD feature, extracted from each SFS separately, was
provided in Figure 12.20.

Besides the Peak Value and the Average Power of the non-normalized PSD, as well as
the Spectral Slope, the MoAD feature proved to be relatively informative when used in the
Geometric Mean and the RMS of the non-normalized spectrum. Dependance of the MoAD’s
informativeness on the spectrogram parameters, when extracted from those two SFSs, was
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Figure 12.19: Informativeness of speciőc time domain temporal features extracted from all
SFSs, from the raw signal (upper plot), őltered signal (middle plot), and the derivative signal
(lower plot).

Figure 12.20: Informativeness of the MoAD feature extracted from speciőc SFSs, from the
őltered signal. ∗ N stands for Normalized.

provided in Figure 12.21.

Similarly to previously analyzed features, MoAD showed greater informativeness when
calculated for shorter window sizes in both the Geometric Mean and the RMS. Note, that in
both SFSs, greater overlap usually provided better results. For the Geometric Mean, window
size of 512 samples and the overlap of 70 percent allowed extraction of the most informative
feature. For the RMS, those parameters were 16 samples and 60 percent.
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Figure 12.21: Informativeness of the MoAD summary of the Geometric Mean (non-
normalized) (left) and the Root Mean Square (non-normalized) SFSs, for varying spectro-
gram parameters.

12.3 Spectrogram parameters

In this section the inŕuence of the spectrogram parameters on the features’ informativeness
will be discussed. In the Figure 12.22, the average coefBMC value of all time features was
provided, for each Spectral Fluctuation Signal separately. Due to relatively large number of
SFSs, axes labels were omitted. In each plot, the axes are identical to previous plots, such
as those in Figure 12.21. That is, the window size was indicated on the x-axis, spanning
from 24 to 214 samples, while the overlap, spanning from 0 to 90 percent, was represented
on the y-axis. Since speciőc informativeness values were discussed earlier, here, the general
patterns observed on each plot will be analyzed. Therefore, each plot has color axis (the
coefBMC ) scaled separately. Finally, similarly to previous plots, darker areas indicate lower
coefBMC values, i.e., more informative features.

Pattern of higher informativeness achieved for low frequency and high time resolution
can be observed in most SFSs, with a couple of exceptions. For example, the Fmax, seems
to follow it up to around 64 samples. With sampling frequency of 10 kHz, it results in
frequency resolution of around 150 Hz. Similarly, Spectral Median and Centroid seem to
achieve highest informativeness at around 128 samples, with frequency resolution of around
80 Hz. Finally, Spectral Skewness achieves lowest coefBMC values with window size of 256
samples, resulting with frequency resolution of around 40 Hz. In all mentioned features, the
frequency resolution of 625 Hz (achieved for the smallest window size of 16 samples used in
this study) proved to be too low to extract the most informative features. It can be explained
by their deőnition, measuring inherently frequency-related information, rather than general
tendencies of power. For example, as indicated in the previous chapter, the power of VAG
signal increases across wide range of frequencies. Therefore, high frequency resolution does
not necessarily allow extraction of more informative features, at least with a time-frequency
resolution tradeoff.

The SFS calculated for the Geometric Average of the non-normalized PSD is the only ex-
ception of this observation, achieving similar informativeness for both low and high frequency
resolution. A possible explanation of this could be the sensitivity of geometric mean to small
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Figure 12.22: Average informativeness of all time features extracted from each SFS, for
varying spectrogram parameters.

amplitude values, more of which are present in the PSD, when the frequency resolution is
high.

For all SFSs, higher overlap in the spectrogram calculation allows extraction of more
informative features. Even though it does not provide any time resolution increase in the
Uncertainty Principle sense, it allows to obtain more continuous SFSs. By increasing the
number of sub-signals used for the spectrogram calculation, and therefore the number of
PSDs, it minimizes the risk of losing information contained in the edges of the window.

In the Figure 12.23, the average coefBMC value obtained for all SFSs, for each time
feature was provided.

Again, for most time measures, lower frequency resolution allows extraction of more
informative features. It is most visible in inherently temporal ones, i.e., the MoAD, mobility,
complexity and TCR. Central tendencies, that is, the median and the mean, seem to achieve
lowest coefBMC values at window sizes not smaller than 64 samples, i.e., with frequency
resolution of minimum 150 Hz. It could indicate, that lower frequency resolution leads to
SFSs that are more variable, and their central values are less meaningful compared to features
measuring their variability.

12.4 Summary

In summary, for each signal, the spectrogram was obtained, with varying parameters of win-
dow size and overlap between the windows. From each spectrogram, 21 Spectral Fluctuation
Signals were obtained, each further summarized with 15 time domain features. This yielded
34 650 features per each preprocessing approach, summing up to 103 950 time-frequency
features total.

The most informative features proved to be the median and the MoAD, extracted from
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Figure 12.23: Average informativeness of speciőc time features extracted from all SFSs, for
varying spectrogram parameters.

SFSs of the non-normalized Peak Value and the Average Power, as well as the Spectral
Slope. All those features increased with progressing conditions of the knee joint, except
for the median value of the Spectral Slope SFS, which decreased. It indicated, that with
progressing knee joint conditions, power of the signal not only grows, but is more variable
along the time axis.

For most SFSs and time domain measures, the őltering preprocessing approach allowed
extraction of the most informative features. Note, that in the frequency-only analysis, this
was not the case. It can be explained by the deőnition of each SFS, based on the whole short-
time PSD. Perhaps extracting each SFS for some speciőc frequency range, as in previous
chapter, would yield more informative features. That could be potentially fruitful direction
for the future studies.

In general, for all SFSs and time domain features, higher overlap between windows in the
spectrogram calculation led to more informative features. The other spectrogram parameter,
i.e., the window size, proved to inŕuence informativeness of the feature depending on its
deőnition. For SFSs measuring power of the signal, shorter window sizes, i.e., of around
16 ms, allowed extraction of more information, indicating lesser importance of frequency
resolution compared to time resolution. However, SFSs measuring some frequency-speciőc
parameters, such as the Spectral Median or the Fmax, proved to be the most informative
for slightly longer window sizes, of around 64 ms. Similarly, in the time domain measures,
inherently temporal features, such as the MoAD proved to be the most informative for high
time resolution. On the other hand, central tendency time domain features achieved highest
informativeness for somewhat longer windows, of around 128 ms.
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12.5 Conclusions

Following conclusions can be derived from the conducted time-frequency analysis.
1. When the SFSs are based on the whole PSD, őltering provides the most informative

features.
2. SFSs based on the power measures provide the most informative features when calcu-

lated for short windows, i.e., high time and low frequency resolution.
3. Higher frequency resolution is needed for the most informative feature extraction based

on the SFSs measuring some inherently frequency-related features, such as the Fmax

or Spectral Centroid.
4. In general, time features measuring speciőcally temporal variability, seem to beneőt

from high temporal resolution.
5. Higher values of the overlap between windows in spectrogram calculation lead to more

continuous SFSs, which allows extraction of more informative features.
6. Future studies could focus on conducting similar time-frequency research, but with

extraction of SFSs based on some speciőc frequency range. It could be 10 Hz to 350 Hz
suggested in the previous chapter, or preferably, the most informative frequency range
per each SFS. In such case, analysis of the raw signal could provide the most informative
features.



Chapter 13

Dimensionality reduction and classifica-

tion

In the current chapter, results of the dimensionality reduction and classiőcation will be
provided. In the őrst section, two steps of the dimensionality reduction will be discussed.
The second section will be devoted to the classiőcation results and the comparison of the
dimensionality reduction approaches in the classiőers’ accuracy context. The last section will
be include the summary and speciőc conclusions, which can be derived from the conducted
analyzes.

13.1 Dimensionality reduction

In the őrst step of dimensionality reduction, all extracted features were divided into 25
groups per preprocessing. In each group, feature selection was done separately, with number
of selected features determined using the elbow method. In summary, from 8 429 331 features
total, 483 were selected after the őrst dimensionality reduction step. In Table 13.1, speciőc
number of features selected in each group was provided.

From each feature group, between 3 and 25 features were selected. Interestingly, the
most features were selected from the Frequency Range Maps. Of course, they included the
most features to begin with. However, it suggests that different frequency ranges can be
both informative and not necessarily redundant, even when measured by the same feature.
Number of selected features did not varied much between the preprocessing approaches.

In the second dimensionality reduction step, all features selected in the őrst step were
combined, and the dimensionality reduction was conducted again. Both MRMR and PCA
were used, each providing 183 features sorted by importance. Note, that while the MRMR
provided sorted list of the original features, the PCA provided new features, that were linear
combinations of the original ones. Informativeness of consecutive features provided by both
algorithms was provided in Figure 13.1. Complete list of all 183 features provided by the
MRMR algorithm was included in Appendix B.

Clearly, the MRMR provides features that are much more informative. The lowest
coefBMC of the PCA-provided features was 0.64, achieved for the őrst feature. It indi-
cates, that most variability in the features obtained in the őrst step reduction provides some
information in the analyzed context. However, consecutive features achieved much greater
coefBMC values, indicating lower information content. Average coefBMC across all 183 PCA-
provided features was equal to around 0.97. In the MRMR curve, much greater variability of
informativeness can be seen, with much lower average coefBMC value, of around 0.87. Note,
that features selected by the MRMR are not necessarily uncorrelated, such as in the PCA.
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Table 13.1: Summary of the őrst dimensionality reduction step.

feature set
before

reduction
after:
raw

after:
őltered

after:
derivative

Time features 3142 5 4 3

FRM: Fmax 125 250 14 9 3

FRM: PVn 125 250 4 4 4

FRM: PVr 125 250 3 5 3

FRM: PVs 125 250 4 5 6

FRM: MedF 125 250 14 8 6

FRM: µf 125 250 7 11 25

FRM: σf 125 250 6 14 3

FRM: skewf 125 250 14 5 7

FRM: kurtf 125 250 3 7 6

FRM: Pn 125 250 5 5 6

FRM: Pr 125 250 5 5 4

FRM: Gn 125 250 5 6 5

FRM: Gr 125 250 6 7 3

FRM: Gs 125 250 5 8 5

FRM: RMSn 125 250 6 7 7

FRM: RMSr 125 250 3 6 3

FRM: RMSs 125 250 7 7 13

FRM: slopef 125 250 9 4 4

FRM: decreasef 125 250 6 13 11

FRM: Hr 125 250 3 5 3

FRM: Hs 125 250 6 6 6

FRM: II 125 250 5 5 5

Frequency ratios and rolloffs 16 485 3 7 6

Time-frequency 34 650 14 4 7

Sum 2 809 777 162 167 154

Average absolute correlation of each feature to all previously selected features was plotted
in Figure 13.2.

The highest absolute correlation, slightly above 0.3, was scored by a couple features.
However, the average correlation value (indicated by dashed line) was around 0.13. Note,
that the MRMR curves from Figures 13.1 and 13.2 are visibly negatively correlated (ρ =
−0.97), which indicates positive correlation between informativeness and redundancy, since
coefBMC decreases for more informative features. This correlation is caused by the deőnition
of the MRMR score, which is a difference between informativeness and absolute correlation.
In other words, a highly redundant feature can be chosen only if it is highly informative.
On the other hand, if the informativeness is relatively low, the feature can be chosen if it
provides relatively new information. Of course, features that are highly informative and not
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Figure 13.1: Informativeness of consecutive features obtained from the MRMR and the PCA.
Average values were indicated by the dashed lines.

Figure 13.2: Average absolute correlation between each feature and all features previously
chosen by the MRMR algorithm.

redundant are always preferred.
The periodicities visible in both plots indicate, that the MRMR őrst selects the feature

least correlated to already selected features, even if it is relatively uninformative. Then,
consecutively selected features are correlated more and more, but their informativeness also
increases. After couple of features this cycle repeats, and the algorithm selects feature that
is, again, relatively uninformative, but also not redundant.

13.2 Classiőcation

After the second step of dimensionality reduction, features provided by both MRMR and
PCA were used to train 11 classiőcation algorithms. Each classiőer was trained on the
number of features increasing from 1 to 183. Dependence of classiőcation accuracies on the
number of features used, for each classiőer, were plotted in Figure 13.3.

Comparing curves of PCA and MRMR on the plot for the Linear Discriminant Analysis,
slightly better performance was achieved using features obtained using PCA. The highest
accuracy of around 0.77 was scored for 45 features, after which the accuracy decreased. This
could indicate LDA’s sensitivity to noisy or redundant features.
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Figure 13.3: Classiőcation results for each classiőer.

The Naive Bayes classiőer achieved relatively poor performance, with its peak accuracy
being roughly 0.67 for 5 best features selected by MRMR algorithm. The classiőer showed a
decrease in accuracy with increasing number of features for both PCA and MRMR. Interest-
ingly, better performance was achieved by the MRMR, which can be surprising considering
assumption of the classiőer of uncorrelated features. Since PCA creates uncorrelated features
by deőnition, one would expect it to achieve higher accuracy. Note, however, that lack of
correlation provided by the PCA does not ensure high informativeness of the features in the
speciőc context of classiőcation.

In both KNN classiőers, accuracies up to around 20 features were similar between the
PCA and MRMR. Above those 20 features, however, performance of PCA signiőcantly
dropped, while MRMR increased. That could be caused by relatively low informativeness
of features provided by the PCA. Lower neighborhood of 5 neighbors considered in the
classiőcation achieved better performance compared to 20 neighbors, indicating that the
closer neighbors have a more signiőcant inŕuence on the high classiőcation accuracy. That
could suggest denser values distribution within the classes, leading to higher importance of
close samples.

Both 5- and 10-split decision trees achieved similar results, with better performance
achieved by MRMR-provided features. Note characteristic ŕat areas in curves. They could
be caused by the fact, that despite greater number of features, decision trees had con-
stant maximum number of splits. They were implemented in such way to avoid overőtting.
Therefore, when new, less informative features were added, both models only used more
informative, "old" features, achieving exact same classiőcation accuracy.

Such ŕat areas are not visible in the decision forests, which curves seem much more
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variable. It could be explained by multiple decision trees used within each forest, each of
which was trained on different samples, achieving more diverse performances. Both bagging
and boosting approaches provided relatively poor performance compared to other classiőers.
For the bagging ensemble approach, MRMR provided better results compared to PCA, while
in RUSboost, performances were comparable.

Linear Support Vector Machine proved to achieve highest classiőcation accuracy of around
0.8, when trained on 110 features provided by the MRMR algorithm. The Gaussian model,
however, achieved much worse performance, with maximal accuracy of 0.66. With more than
4 features, performance declined with both MRMR- and PCA-provided features. Above 27
features for MRMR and 14 for PCA, the performance dropped to around 0.36, indicating
that classiőer always chose őrst class (containing 66 from 184 samples). Much lower per-
formance of the Gaussian SVM, compared to the linear version, could be caused by several
factors. First, model complexity: the Gaussian kernel’s implicit inőnite-dimensional feature
space allows for highly ŕexible decision boundaries. This ŕexibility, however, can capture
intricate variations in the training data that do not generalize well to new data, leading
to lower performance even when measured using cross-validation. Another factor could be
distribution of the features. If the relationship between the features and the classes is close
to linear, the kernel trick used in Gaussian SVM could introduce unnecessary complexity,
trying to őnd nonlinear patterns that are not present.

The NN classiőer achieved relatively high accuracy of 0.77. For smaller number of fea-
tures, up to around 50, those provided by the PCA proved to lead to slightly better per-
formance compared to the MRMR. For higher number of features, accuracy locally varied,
but in general stayed at quasi-constant level, for both PCA and MRMR. Those variations
could be caused by nonlinearity of the neural network, increasing inŕuence of the number of
features on classiőcation performance.

In general, the MRMR provided features that led to higher accuracy for most classi-
őersÐsee lowest-right curve in Figure 13.3. It can be explained by the fact, that when
selecting features, the MRMR explicitly takes into account their informativeness (or rele-
vance). The PCA, on the other hand, transforms the features into new ones, capturing
the most possible amount of variance, while keeping them orthogonal. It is done without
the speciőc context of classiőcation. Variability in features, that is not related to the an-
alyzed context, can be considered noise. This noise does not greatly inŕuence the MRMR
feature selection, because it can be present in both informative and uninformative features,
as well as redundant and not redundant ones. On the other hand, this noise is ampliőed
by the PCA, potentially outweighing informative variability in features, i.e., variability that
actually relate to the classiőed conditions.

13.3 Summary and conclusions

In summary, there were 8 429 331 features extracted in this work. Reduction of their di-
mensionality was conducted in two steps. In the őrst step, features were divided into 75
groups (25 per preprocessing), and in each group, the MRMR algorithm was used to select
the feature subset. The number of selected features within groups varied between 3 and 25.
In the second step, all those subsets were combined, making up a total of 483 features. To
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further reduce this number, two approaches were employed: the MRMR algorithm and the
PCA. Both provided 183 features, sorted by importance.

The MRMR provided features of varying informativeness ( coefBMC ranging from 0.58 to
0.98 and an average of 0.87), and redundancy (correlation of speciőc features between 0.00
and 0.31, with average of 0.13). The PCA, on the other hand, provided features uncorrelated
by deőnition, but of relatively poor information content (coefBMC ranging from 0.64 to 0.99,
with average of 0.97). That led to generally better performance of the MRMR-provided
features in the classiőcation context.

General inŕuence of the number of features on the classiőcation accuracy proved to be
highly dependent on the speciőc classiőcation model. However, in most models trained on
features provided by the MRMR, accuracy seemed to plateau above some speciőc number
of features, and decrease for the PCA-provided ones.

Following conclusions can be drawn from the provided research.
1. Features within groups were relatively highly correlated, leading to selection of just

few (3 to 25) features per group.
2. The MRMR algorithm proved to provide more informative features compared to PCA,

indicated by a lower average coefBMC of around 0.87 vs 0.97 with PCA.
3. There proved to be a positive correlation (ρ = 0.97) between the informativeness and

redundancy of features selected by the MRMR, indicating that there was not much in-
formative and not-redundant features, and most features was either highly informative
and redundant or less informative, but providing relatively new information.

4. There is a visible periodicity in both informativeness and redundancy of consecutive fea-
tures selected by the MRMR algorithm, indicating that the method alternates between
selecting less informative features that are also less redundant and more informative
features which are more correlated to already selected ones.

5. For most classiőcation algorithms, features selected by the MRMR algorithm resulted
in higher classiőcation accuracies compared to the PCA, as these features were explic-
itly selected for their high informativeness in the speciőc context of this work. Trans-
formation of features in the PCA could potentially lead to lowered informativeness of
new features, by amplifying variability in features’ values that does not contribute to
the classiőcation context.



Chapter 14

Summary and conclusions

In the current chapter, a summary of the conducted research will be provided, as well as the
limitations of the study and conclusions, which can be derived from it.

14.1 Summary

The conducted research allowed to prove thesis of the work: "The application of digital signal
processing methods in vibroarthrographic signal analysis, speciőcally in the time domain,
frequency domain, and time-frequency domain, will enable extraction of features allowing the
classiőcation of knee joint conditions with accuracy higher than the current state-of-the-art
(0.69)". All major and minor goals were achieved.

In this work, vibroarthrograms acquired from őve classes of knee joint conditions were
analyzed. The largest part of this work was focused on feature extraction from signals after
three preprocessing approaches: őltering, differentiation and no preprocessig. This enabled
more direct comparison in terms of the information content each approach highlights or
suppresses in a given signal analysis context. After extraction of the features, dimensionality
reduction was conducted, followed by classiőcation. The most accurate classiőer, Linear
Support Vector Machine, achieved around 0.80 accuracy, which is around 0.11 more than
the current state-of-the-art achieved by Kręcisz and Bączkowicz [5].

The feature extraction was divided into three major approaches: time, frequency and
time-frequency. In each approach, multiple features were extracted, and then thoroughly
analyzed in terms of their informativeness. In case of parametric features, inŕuence of the
parameters on the information content was also comprehensively investigated and discussed.

In time domain, őve major groups of features were extracted. First, statistical, treated
the signal as an unordered group of values, whose distribution was assumed to be informa-
tive. Second group was extracted from a rolling signal, i.e., signal constructed from some
parameter calculated in a sliding window. In this approach, signals were no longer assumed
to be unordered groups of values, and extracted features had inherently temporal character.
Third group included measures that more explicitly quantiőed signal variation in time, being
calculated using the differences is the consecutive points of the signals. Forth group consisted
of features measuring self-similarity of the signal, either in time, using the Autocorrelation
Function, or in scale, using the Detrended Fluctuation Analysis. The last, őfth group was
deőned on the Reconstructed Phase Space, measuring the complexity and nonlinear dynam-
ics of the signal. Features in all groups were extracted from all preprocessing approaches,
summing up to a total of 9426 singular features.

To analyze signal in the frequency domain, őrst, a couple of carefully selected PSD es-
timation methods were compared. The method allowing extraction of the most informative
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features was further used for this purpose. Majority of the frequency-domain features could
be understood as being parametric, with the parameters being the lower and upper fre-
quency of the range, on which the speciőc feature is calculated. Therefore, a set of 22 such
features was extracted, each for a comprehensive set of different ranges. Additionally, a
visualization method, called the Frequency Range Map, was proposed in order to intuitively
present informativeness across various frequency ranges. Majority of features was extracted
in such frequency range approach, however, a couple of different parametric features were
also obtained. Their parameters were examined in terms of their inŕuence on the feature’s
information content. Similarly to time-domain, frequency-domain features were extracted
separately for each preprocessing approach, yielding a total of 8 315 955 features.

The last approach of the feature extraction was conducted in the time-frequency context,
that is, after transforming parts of a signal into the frequency domain and quantifying changes
of the obtained spectra across time. This approach was utilized using the spectrogram,
and the inŕuence of its speciőc parameters on the extracted features’ informativeness were
thoroughly investigated. Additional analyzes were conducted in time and frequency context
separately, which indicated how speciőc conőgurations of spectrogram’s parameters depend
on the character of the extracted feature. For all preprocessing approaches utilized in this
work, time-frequency analysis provided 103 950 separate features.

Combining all features yielded a total of 8 429 331. Extraction of such a great number of
features was done primarily to analyze informativeness of parametric features in the context
of their parameters. In order to do so, features were extracted for a number of parameters’
values with relatively high resolution, or small differences in those values. Such approach
enabled intuitive visualization, however, also rendered majority of the obtained features
highly correlated. To effectively utilize features for the classiőcation task, they should contain
as little redundant information as possible. Therefore, after the feature extraction, the
dimensionality reduction was conducted in two stages. In the őrst stage, the most informative
and lest redundant features were selected using the MRMR algorithm, reducing number of
features to 483. In the second step, this number was further reduced using both MRMR and
PCA algorithms, which allowed direct comparison of those two approaches in the context
of classiőcation accuracy. Since distribution of the most informative, selected features was
unknown, 11 different classiőcation algorithms were implemented. Finally, inŕuence of the
number of features on the classiőcation accuracy was analyzed and discussed.

14.2 Limitations

Although the conducted study was rather comprehensive, some limitations could be identi-
őed. First, utilized preprocessing methods were relatively simple, which potentially reduced
amount of information extracted from the signal, especially in time domain. Perhaps less
frequency-speciőc approaches, such as the Empirical or Variational Mode Decompositions,
already used in VAG-related studies (see Chapter 3), could provide more informative signals
in general. Such approaches could inŕuence frequency domain in nonlinear ways, potentially
improving also informativeness of the frequency domain features.

Second, informativeness obtained for each feature, measured by the coefBMC , was calcu-
lated using all signals in the signal base. Therefore, in the feature selection step, features that



180 CHAPTER 14. SUMMARY AND CONCLUSIONS

describe all signals in the best possible way were selected. That could potentially create a
sort of information leakage, that could artiőcially increase classiőcation accuracy, even when
evaluated using cross-validation. To avoid this limitation, the parameter selection of each
parametric feature could also be done in a cross-validation manner. However, two problems
would arise in such approach. The őrst, more practical issue, would be high computational
cost. Even training one classiőer would be more computationally expensive compared to the
computation of coefBMC , and training multiple ones needed for cross-validation would rise
computational cost much higher. Second, more conceptual issue, is related to the choice of
speciőc classiőer. As discussed, different classiőcation algorithms have different strengths
and weaknesses in terms of the data distribution. Therefore, selecting one speciőc classi-
őcation algorithm would render analyzes less general. That is the exact reason for using
coefBMC as an informativeness measure instead of a accuracy of some classiőer.

Another potential limitation is the exclusive usage of coefBMC in the MRMR algorithm.
Since coefBMC is deőned as the weighted average of the coefB values, MRMR selects features
that are well suited to differentiate all classes, not their speciőc pairs. Results of speciőc
features indicated, that some pairs of classes, such as the ctrl and cmp1, or cmp3 and oa
are much more difficult to differentiate compared to other pairs. It is not unexpected, since
signals in those classes are acquired from the knee joints with similar qualities of movement.
However, some features could potentially be better suited to differentiate them than others.
Therefore, maybe MRMR could be implemented in a way to measure relevancy not as a
singular coefBMC , but to successively select features, that are more informative only in
the class pair context, that is not well differentiated by already selected features. Such
implementation, though, was kept for the future research.

In order to keep the analyzes relatively simple, the time-frequency features were deőned on
the whole spectrum. More information, however, could potentially be extracted by features
deőned on a spectrum limited to some speciőc frequency range, potentially őrst chosen by
the frequency analysis. Such analyzes were also kept for future research, since spectral
ŕuctuations would not necessarily be the most informative in a frequency range chosen in
the FRM. Perhaps more general approach would be to choose the frequency range on a basis
of a curve similar to one on Figure 11.44. That is, on the average informativeness of some
frequency bins in all frequency ranges containing this bin.

Finally, a more technical limitation, is a lack of information about the knee joint move-
ment phase synchronized with the VAG signal. Results of the time analysis indicated, that
such information is already embedded in a signal, in a form of low-frequency component.
More explicit information, however, would allow more direct analyzes of different movement
phases. In some publications (see Chapter 3), segmentation of the signal proved to result in
more informative features. Therefore, this lack of explicit information about the knee joint
movement phase, could also be consider a limitation of this study.

14.3 Conclusions

Conclusions derived from the conducted research could be divided into three categories,
regarding: general analysis of the vibroarthrogram, changes in the signal is progressing knee
joint conditions and directions for future studies.
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14.3.1 General analysis of the vibroarthrogram

Conclusions regarding general analysis of the vibroarthrogram are as follows.
1. In general, most time-domain features proved to be more informative when calculated

on the signal őltered in speciőc frequency range. One exception, however, turned out
to be features based on proximity of points (or sub-signals). They seem to beneőt from
low-frequency movement phase information embedded in the raw signal. Embedding
this information in the őltered signal could potentially increase their informativeness
even more.

2. The Welch method with window size of 214 samples provided the most informative
estimate of the Power Spectral Density.

3. Frequency analysis indicated that various frequency ranges can be informative depend-
ing on speciőc feature calculated. In general, however, frequency range from 10 Hz to
350 Hz proved to be the most informative across all studied features.

4. Analysis of power in the frequency domain provided the most informative features
when conducted on the non-normalized spectrum.

5. Moreover, frequency analysis proved to provide the most informative features for the
raw signal.

6. Time-frequency analysis, on the other hand, provided the most information when con-
ducted on the őltered signal.

7. In time-frequency analysis, the most informative features proved to be those related
to the signal’s power, rather than the shape of the PSD.

8. Spectrogram’s parameters that provide the most informative features seem to depend
on the speciőc features being extracted. However, in most features greater overlap
provided features of greater informativeness. In terms of time and frequency resolution
tradeoff, features related speciőcally to time (like MoAD) seem to beneőt from better
time resolution, while features measuring central tendencies of the PSD provided the
best results for better frequency resolution.

9. The dimensionality reduction part of the study indicated that the MRMR provided
more informative features compared to the PCA.

10. From all utilized classiőcation methods, the Linear Support Vector Machine provided
the highest classiőcation accuracy, when trained on 110 features.

14.3.2 Changes in the signal with progressing knee joint conditions

Conducted research provided following conclusions regarding VAG signal characteristics in
the progressing knee joint conditions.

1. Power of the signal generally increases, which, in time domain, can be quantiőed by
for example ASP or RMS features.

2. Variability also increases, which can be measured by variance, standard deviation, etc.
3. Complexity measures, such as entropy features or LLE also increase.
4. On the other hand, features measuring long-range dependencies of the signal decrease.
5. Power of the signal increases in wide frequency range, yielding increased values of

measures such as Spectral Spread or Entropy.
6. However, lower frequencies tend to increase more compared to higher ones, yielding
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decreased values of Spectral Slope or Skewness features.
7. Variability of the signal’s spectral content increase, which can be measured, for exam-

ple, by MoAD feature of the Spectral Slope SFS.

14.3.3 Directions for the future VAG-related studies

Future VAG-related research could potentially beneőt from implementing the following ap-
proaches.

1. Lowered sampling frequency. Conducted study indicated that the most informative
frequency range is around from 10 Hz to 350 Hz. Therefore, sampling frequencies as
low as 700 Hz would potentially be sufficient for extraction of relatively informative
features.

2. Moreover, this frequency range could be used for signal őltering.
3. Augmenting the signal by adding movement phase information could increase informa-

tiveness of features based on proximity of sub-signals or samples.
4. Instead of full frequency range, time-frequency analysis conducted in this work could

be implemented on a speciőc frequency range based on the FRMs.

14.3.4 Novelty of the research

The novelty and value of this research lies in the following list of original achievements.
1. Comprehensive examination of VAG features in various domains, including time, fre-

quency, and time-frequency, with a speciőc focus on their information content. That
provides a useful reference for the choice of signals characteristics in the future studies.

2. Explicit calculation of the feature’s informativeness, that is, its ability to differentiate
between the analyzed classes. It enabled all analyzes to be conducted with the speciőc
focus on the classiőcation context.

3. Comparison of multiple signal and data processing methods, including: different pre-
processing approaches, spectrum estimation methods, time-frequency resolution trade-
offs, as well as dimensionality reduction and classiőcation algorithms. This comparison
serves as a useful resource for making informed decisions in a general biomedical signal
processing chain.

4. Thorough analysis of the parametric features. That is, investigation of all parameters
and their inŕuence on the features’ informativeness. That enabled optimization of the
parameters, as well as better understanding of the changes in the vibroarthrograms in
the analyzed context.

5. Dimensionality reduction of the feature space, providing a list of features in the most
informative subset (see Appendix B), and improving upon current stat-of-the-art clas-
siőcation accuracy.

6. The research provided conclusions that were speciőcally grouped into three major
categories: the general approach to VAG signal analysis, changes in the signal with
progressing degradation of the knee joint, and general directions for future VAG-related
studies. This allows for easy comprehension and application of őndings.



Appendix A

Detailed results of the PSD estimation com-

parison

Table A.1: Detailed results of the most informative features per PSD estimation method,
per FRM feature, for the raw signal.

feature period w512 w1k w2k w4k w8k w16k w32k mt3 mt7 mt15

Fmax 0.935 0.925 0.927 0.926 0.920 0.921 0.921 0.916 0.917 0.930 0.916

PVn 0.773 0.773 0.768 0.774 0.760 0.770 0.723 0.753 0.754 0.746 0.755

PVr 0.815 0.822 0.821 0.817 0.816 0.829 0.802 0.801 0.801 0.826 0.822

PVs (Crest) 0.887 0.878 0.881 0.873 0.876 0.880 0.888 0.904 0.921 0.909 0.893

Median 0.897 0.897 0.898 0.898 0.900 0.908 0.896 0.913 0.904 0.905 0.902

Centroid 0.812 0.809 0.809 0.810 0.810 0.823 0.816 0.808 0.813 0.813 0.815

Spread 0.733 0.749 0.736 0.737 0.730 0.741 0.736 0.730 0.728 0.733 0.735

Skewness 0.747 0.739 0.737 0.749 0.755 0.765 0.759 0.759 0.761 0.765 0.765

Kurtosis 0.790 0.763 0.772 0.779 0.792 0.800 0.811 0.811 0.804 0.805 0.801

Pn 0.742 0.748 0.743 0.738 0.736 0.755 0.715 0.739 0.730 0.738 0.742

Pr 0.810 0.817 0.812 0.809 0.808 0.818 0.808 0.800 0.812 0.813 0.812

Gn 0.706 0.696 0.700 0.701 0.697 0.720 0.684 0.712 0.700 0.703 0.704

Gr 0.778 0.770 0.773 0.775 0.775 0.788 0.783 0.784 0.779 0.782 0.779

Gs (Flatness) 0.780 0.772 0.775 0.776 0.776 0.789 0.785 0.784 0.781 0.783 0.780

RMSn 0.747 0.751 0.743 0.742 0.739 0.755 0.732 0.745 0.739 0.740 0.744

RMSr 0.807 0.816 0.812 0.812 0.808 0.818 0.818 0.803 0.812 0.815 0.813

RMSs (FF) 0.874 0.873 0.878 0.877 0.877 0.883 0.883 0.890 0.897 0.899 0.894

Slope 0.741 0.746 0.743 0.738 0.735 0.757 0.715 0.735 0.728 0.736 0.741

Decrease 0.940 0.887 0.895 0.891 0.906 0.914 0.910 0.926 0.917 0.926 0.922

Hr 0.795 0.784 0.785 0.788 0.788 0.800 0.790 0.784 0.794 0.797 0.797

Hs 0.869 0.784 0.830 0.875 0.877 0.882 0.878 0.888 0.887 0.897 0.890

Irregularity Index 0.777 0.760 0.754 0.759 0.756 0.769 0.765 0.760 0.771 0.777 0.782

average 0.807 0.798 0.800 0.802 0.802 0.813 0.801 0.807 0.807 0.811 0.809
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Table A.2: Detailed results of the most informative features per PSD estimation method,
per FRM feature, for the őltered signal.

feature period w512 w1k w2k w4k w8k w16k w32k mt3 mt7 mt15

Fmax 0.856 0.893 0.887 0.883 0.896 0.896 0.864 0.874 0.873 0.891 0.895

PVn 0.775 0.773 0.768 0.775 0.761 0.771 0.723 0.754 0.753 0.746 0.756

PVr 0.903 0.924 0.924 0.918 0.913 0.901 0.907 0.910 0.910 0.906 0.906

PVs (Crest) 0.919 0.919 0.930 0.927 0.919 0.914 0.914 0.921 0.914 0.916 0.914

Median 0.849 0.807 0.864 0.854 0.851 0.846 0.843 0.852 0.847 0.848 0.848

Centroid 0.839 0.831 0.835 0.840 0.845 0.842 0.835 0.845 0.839 0.839 0.840

Spread 0.898 0.882 0.888 0.896 0.897 0.905 0.899 0.913 0.914 0.911 0.904

Skewness 0.871 0.850 0.860 0.869 0.873 0.872 0.870 0.871 0.872 0.872 0.872

Kurtosis 0.934 0.916 0.934 0.935 0.934 0.936 0.930 0.934 0.925 0.934 0.930

Pn 0.731 0.731 0.731 0.728 0.725 0.752 0.715 0.743 0.726 0.731 0.733

Pr 0.876 0.883 0.879 0.877 0.875 0.873 0.867 0.875 0.873 0.874 0.875

Gn 0.705 0.706 0.707 0.703 0.699 0.723 0.687 0.708 0.697 0.703 0.704

Gr 0.823 0.822 0.816 0.822 0.820 0.822 0.816 0.814 0.803 0.797 0.796

Gs (Flatness) 0.886 0.822 0.825 0.828 0.825 0.829 0.829 0.833 0.816 0.793 0.788

RMSn 0.750 0.753 0.746 0.745 0.742 0.757 0.735 0.749 0.742 0.743 0.746

RMSr 0.868 0.871 0.873 0.873 0.870 0.867 0.871 0.884 0.871 0.870 0.871

RMSs (FF) 0.919 0.873 0.901 0.905 0.915 0.918 0.914 0.916 0.915 0.919 0.920

Slope 0.729 0.729 0.728 0.726 0.723 0.750 0.712 0.739 0.723 0.728 0.730

Decrease 0.947 0.867 0.873 0.935 0.924 0.932 0.948 0.952 0.953 0.942 0.911

Hr 0.877 0.881 0.881 0.880 0.878 0.875 0.869 0.875 0.875 0.875 0.876

Hs 0.902 0.850 0.885 0.890 0.898 0.899 0.908 0.919 0.901 0.900 0.897

Irregularity Index 0.875 0.878 0.874 0.873 0.872 0.871 0.866 0.873 0.872 0.872 0.873

average 0.851 0.839 0.846 0.849 0.848 0.852 0.842 0.852 0.846 0.846 0.845
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Table A.3: Detailed results of the most informative features per PSD estimation method,
per FRM feature, for the derivative signal.

feature period w512 w1k w2k w4k w8k w16k w32k mt3 mt7 mt15

Fmax 0.805 0.752 0.822 0.808 0.810 0.810 0.798 0.795 0.799 0.806 0.806

PVn 0.761 0.764 0.760 0.761 0.760 0.763 0.738 0.758 0.757 0.746 0.755

PVr 0.884 0.894 0.889 0.887 0.886 0.883 0.881 0.890 0.882 0.881 0.884

PVs (Crest) 0.853 0.885 0.864 0.848 0.850 0.852 0.850 0.867 0.850 0.851 0.845

Median 0.788 0.799 0.777 0.791 0.791 0.797 0.787 0.809 0.792 0.789 0.791

Centroid 0.759 0.742 0.756 0.765 0.763 0.773 0.762 0.782 0.765 0.761 0.762

Spread 0.892 0.893 0.892 0.895 0.894 0.895 0.893 0.901 0.891 0.894 0.894

Skewness 0.771 0.751 0.765 0.776 0.778 0.785 0.772 0.793 0.774 0.772 0.774

Kurtosis 0.876 0.878 0.876 0.878 0.877 0.876 0.874 0.885 0.881 0.878 0.880

Pn 0.742 0.744 0.739 0.732 0.737 0.760 0.723 0.740 0.732 0.739 0.740

Pr 0.873 0.874 0.873 0.874 0.875 0.872 0.863 0.869 0.868 0.872 0.873

Gn 0.706 0.701 0.701 0.700 0.701 0.724 0.684 0.712 0.699 0.704 0.704

Gr 0.882 0.877 0.877 0.880 0.883 0.884 0.882 0.897 0.883 0.883 0.882

Gs (Flatness) 0.911 0.918 0.917 0.919 0.914 0.914 0.910 0.915 0.918 0.919 0.918

RMSn 0.753 0.755 0.752 0.746 0.750 0.765 0.738 0.750 0.746 0.749 0.752

RMSr 0.863 0.873 0.872 0.872 0.868 0.873 0.865 0.876 0.869 0.871 0.872

RMSs (FF) 0.871 0.894 0.881 0.874 0.876 0.873 0.873 0.877 0.875 0.873 0.874

Slope 0.783 0.768 0.772 0.769 0.772 0.774 0.766 0.768 0.774 0.776 0.780

Decrease 0.890 0.766 0.784 0.833 0.845 0.858 0.894 0.918 0.913 0.872 0.862

Hr 0.876 0.874 0.874 0.875 0.878 0.879 0.873 0.878 0.875 0.877 0.877

Hs 0.895 0.898 0.896 0.896 0.895 0.891 0.888 0.894 0.895 0.894 0.894

Irregularity Index 0.871 0.868 0.868 0.869 0.869 0.867 0.860 0.867 0.866 0.869 0.870

average 0.832 0.826 0.828 0.830 0.831 0.835 0.826 0.838 0.832 0.831 0.831
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List of the most informative features

Table B.1: List of the most informative features selected by the MRMR algorithm.

1 F RAV - 0.580

2 F Slope fL = 0 Hz, fU = 300 Hz 0.853

3 D Slope fL = 270 Hz, fU = 300 Hz 0.857

4 D Slope fL = 190 Hz, fU = 200 Hz 0.847

5 R Singularity m = 1, q = 2 0.708

6 D SampEn m = 3, r = max 0.905

7 D ApEn m = 4, r = 0.2 0.904

8 F MoAD - 0.601

9 R Slope fL = 490 Hz, fU = 510 Hz 0.907

10 R Slope fL = 110 Hz, fU = 120 Hz 0.887

11 D Gn fL = 0 Hz, fU = 350 Hz 0.682

12 R Slope fL = 140 Hz, fU = 160 Hz 0.856

13 R Slope fL = 640 Hz, fU = 670 Hz 0.906

14 R LLEzc - 0.665

15 R Slope fL = 290 Hz, fU = 300 Hz 0.865

16 R Slope fL = 280 Hz, fU = 320 Hz 0.848

17 R Gn fL = 0 Hz, fU = 350 Hz 0.682

18 F Slope fL = 390 Hz, fU = 400 Hz 0.879

19 R Ratio L2H fth = 150 Hz 0.847

20 R Slope fL = 240 Hz, fU = 250 Hz 0.849

21 F Gn fL = 0 Hz, fU = 360 Hz 0.685

22 R m - 0.941

23 F Slope fL = 210 Hz, fU = 230 Hz 0.880

24 D Spectral Slope SFSÐCV ws = 16384, ovl = 0.1 0.954

25 R Slope fL = 80 Hz, fU = 3550 Hz 0.702

26 F Spectral Slope SFSÐMF ws = 32, ovl = 0.4 0.942

27 D Spectral Skewness SFSÐCV ws = 2048, ovl = 0.6 0.928

28 R Skewness fL = 0 Hz, fU = 3940 Hz 0.767

29 R Spread fL = 4550 Hz, fU = 4760 Hz 0.937

30 R Slope fL = 80 Hz, fU = 3390 Hz 0.702

31 R Spread fL = 2400 Hz, fU = 2510 Hz 0.953

32 D Spectral Decrease SFSÐTCR ws = 128, ovl = 0.9 0.740

no. pp feature name feature parameters coefBMC

Continued on next page
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Table B.1: List of the most informative features selected by the MRMR algorithm. (Con-
tinued)

33 D Spread fL = 0 Hz, fU = 230 Hz 0.888

34 D Gn SFSÐcomplexity ws = 4096, ovl = 0.2 0.943

35 F Hs fL = 4520 Hz, fU = 4530 Hz 0.949

36 R Pn fL = 80 Hz, fU = 1780 Hz 0.704

37 D Gn SFSÐMF ws = 2048, ovl = 0.3 0.960

38 R Gr fL = 420 Hz, fU = 430 Hz 0.877

39 F Decrease fL = 3530 Hz, fU = 3600 Hz 0.956

40 R Spectral Decrease SFSÐskewness ws = 64, ovl = 0.6 0.775

41 F Median fL = 3610 Hz, fU = 3660 Hz 0.922

42 R Spectral Slope SFSÐMoAD ws = 16, ovl = 0.9 0.714

43 D Decrease fL = 800 Hz, fU = 820 Hz 0.953

44 R Pn SFSÐkurtosis ws = 16384, ovl = 0.0 0.954

45 F PVn fL = 230 Hz, fU = 270 Hz 0.714

46 D Spread fL = 2330 Hz, fU = 2590 Hz 0.949

47 R Skewness fL = 0 Hz, fU = 2840 Hz 0.759

48 F Median fL = 1530 Hz, fU = 4220 Hz 0.951

49 R Skewness fL = 1560 Hz, fU = 1650 Hz 0.951

50 R Pn SFSÐMoAD ws = 16, ovl = 0.9 0.715

51 R Spread fL = 1390 Hz, fU = 1530 Hz 0.947

52 D Kurtosis fL = 4710 Hz, fU = 4900 Hz 0.965

53 R PVn fL = 230 Hz, fU = 270 Hz 0.715

54 F ApEn rfixed, m10, r0.18 0.946

55 R Median fL = 4190 Hz, fU = 4500 Hz 0.955

56 F Spectral Slope SFSÐMoAD ws = 16, ovl = 0.6 0.703

57 F Fmax fL = 4760 Hz, fU = 4770 Hz 0.940

58 R Median fL = 3780 Hz, fU = 3820 Hz 0.952

59 D Centroid fL = 0 Hz, fU = 130 Hz 0.731

60 R Median fL = 690 Hz, fU = 710 Hz 0.964

61 F Slope fL = 80 Hz, fU = 970 Hz 0.706

62 R Skewness fL = 2700 Hz, fU = 2740 Hz 0.953

63 F Centroid fL = 1630 Hz, fU = 1710 Hz 0.963

64 D PVn fL = 220 Hz, fU = 270 Hz 0.716

65 R Skewness fL = 3210 Hz, fU = 3340 Hz 0.951

66 F Gs (Flatness) fL = 4750 Hz, fU = 4760 Hz 0.947

67 R RMSn SFSÐMoAD ws = 16, ovl = 0.9 0.719

68 F Decrease fL = 610 Hz, fU = 750 Hz 0.953

69 F Gs (Flatness) fL = 50 Hz, fU = 60 Hz 0.956

70 D Hurst m = 1, q = 2 0.741

71 D Centroid fL = 4410 Hz, fU = 4450 Hz 0.970

72 F Centroid fL = 3350 Hz, fU = 3370 Hz 0.972

no. pp feature name feature parameters coefBMC
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Table B.1: List of the most informative features selected by the MRMR algorithm. (Con-
tinued)

73 F Pn fL = 80 Hz, fU = 1810 Hz 0.709

74 F Gs (Flatness) fL = 790 Hz, fU = 830 Hz 0.952

75 D Centroid fL = 0 Hz, fU = 120 Hz 0.731

76 F Spread fL = 1250 Hz, fU = 1370 Hz 0.962

77 R Fmax fL = 250 Hz, fU = 600 Hz 0.958

78 R Skewness fL = 1750 Hz, fU = 1770 Hz 0.963

79 D Centroid fL = 0 Hz, fU = 140 Hz 0.735

80 R
Spectral Flux Non-normalized
SFSÐkurtosis

ws = 32, ovl = 0.6 0.938

81 D Skewness fL = 1560 Hz, fU = 1650 Hz 0.953

82 R PVr fL = 540 Hz, fU = 550 Hz 0.895

83 D Pn fL = 40 Hz, fU = 360 Hz 0.714

84 R Skewness fL = 2910 Hz, fU = 3010 Hz 0.962

85 F Decrease fL = 1440 Hz, fU = 1500 Hz 0.969

86 D Skewness fL = 4180 Hz, fU = 4470 Hz 0.956

87 D Skewness fL = 0 Hz, fU = 120 Hz 0.745

88 F Median fL = 690 Hz, fU = 710 Hz 0.962

89 D Centroid fL = 3100 Hz, fU = 3460 Hz 0.963

90 R RMSn fL = 210 Hz, fU = 1780 Hz 0.731

91 D Centroid fL = 1220 Hz, fU = 1240 Hz 0.963

92 D Centroid fL = 2410 Hz, fU = 2480 Hz 0.959

93 D Skewness fL = 0 Hz, fU = 130 Hz 0.748

94 R Skewness fL = 790 Hz, fU = 820 Hz 0.948

95 F Median fL = 980 Hz, fU = 1030 Hz 0.939

96 R Hs fL = 10 Hz, fU = 2000 Hz 0.733

97 R Skewness fL = 4770 Hz, fU = 4800 Hz 0.954

98 R Median fL = 1450 Hz, fU = 1480 Hz 0.959

99 R RMSn fL = 240 Hz, fU = 270 Hz 0.739

100 F Kurtosis fL = 3510 Hz, fU = 3600 Hz 0.966

101 R Skewness fL = 4840 Hz, fU = 4860 Hz 0.969

102 R Hs fL = 10 Hz, fU = 1500 Hz 0.733

103 D Skewness fL = 3220 Hz, fU = 3340 Hz 0.949

104 D Decrease fL = 0 Hz, fU = 90 Hz 0.949

105 D Centroid fL = 0 Hz, fU = 110 Hz 0.738

106 D Centroid fL = 3750 Hz, fU = 3850 Hz 0.957

107 D Median fL = 1810 Hz, fU = 1950 Hz 0.966

108 F RMSn fL = 210 Hz, fU = 330 Hz 0.734

109 R Decrease fL = 2320 Hz, fU = 2530 Hz 0.958

110 F Median fL = 3750 Hz, fU = 3780 Hz 0.950

no. pp feature name feature parameters coefBMC
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Table B.1: List of the most informative features selected by the MRMR algorithm. (Con-
tinued)

111 R
Spectral Flux Normalized
SFSÐmedian

ws = 64, ovl = 0.9 0.881

112 D Median fL = 2930 Hz, fU = 3000 Hz 0.963

113 D PVn fL = 100 Hz, fU = 130 Hz 0.773

114 R Median fL = 1550 Hz, fU = 1670 Hz 0.953

115 F Pn fL = 250 Hz, fU = 260 Hz 0.739

116 F Decrease fL = 4040 Hz, fU = 4050 Hz 0.960

117 R Centroid fL = 4270 Hz, fU = 4460 Hz 0.948

118 D Median fL = 0 Hz, fU = 120 Hz 0.743

119 R Centroid fL = 3850 Hz, fU = 3890 Hz 0.957

120 F Decrease fL = 3390 Hz, fU = 3410 Hz 0.968

121 R Spectral Kurtosis SFSÐmean ws = 16384, ovl = 0.1 0.847

122 F Fmax fL = 3780 Hz, fU = 3870 Hz 0.952

123 F PVn fL = 110 Hz, fU = 130 Hz 0.771

124 D Decrease fL = 4790 Hz, fU = 4950 Hz 0.965

125 D Decrease fL = 1140 Hz, fU = 1150 Hz 0.974

126 R Spread fL = 0 Hz, fU = 360 Hz 0.734

127 R Decrease fL = 3140 Hz, fU = 3390 Hz 0.957

128 D Centroid fL = 3950 Hz, fU = 4030 Hz 0.966

129 R Pn fL = 220 Hz, fU = 270 Hz 0.740

130 F Gr fL = 2870 Hz, fU = 3900 Hz 0.971

131 D Spectral Slope SFSÐmedian ws = 128, ovl = 0.0 0.794

132 D Centroid fL = 1330 Hz, fU = 1380 Hz 0.956

133 F PVr fL = 0 Hz, fU = 10 Hz 0.834

134 F Ratio L2H fth = 505 Hz 0.955

135 D RMSn fL = 70 Hz, fU = 330 Hz 0.728

136 F Decrease fL = 4030 Hz, fU = 4060 Hz 0.957

137 D Centroid fL = 1540 Hz, fU = 1640 Hz 0.956

138 R Spread fL = 0 Hz, fU = 350 Hz 0.735

139 F Kurtosis fL = 50 Hz, fU = 60 Hz 0.954

140 D Decrease fL = 1470 Hz, fU = 1480 Hz 0.973

141 D Centroid fL = 3850 Hz, fU = 3890 Hz 0.958

142 R Irregularity Index fL = 0 Hz, fU = 40 Hz 0.739

143 R SampEn m = 9, r = 0.0 0.922

144 D Centroid fL = 270 Hz, fU = 300 Hz 0.957

145 D Centroid fL = 0 Hz, fU = 150 Hz 0.746

146 D Centroid fL = 2730 Hz, fU = 2750 Hz 0.976

147 R Spread fL = 3080 Hz, fU = 3200 Hz 0.958

148 D Slope fL = 60 Hz, fU = 330 Hz 0.835

149 D Centroid fL = 4280 Hz, fU = 4450 Hz 0.949

no. pp feature name feature parameters coefBMC
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Table B.1: List of the most informative features selected by the MRMR algorithm. (Con-
tinued)

150 D Median fL = 0 Hz, fU = 130 Hz 0.748

151 R Centroid fL = 2530 Hz, fU = 2670 Hz 0.970

152 F Spread fL = 3180 Hz, fU = 3220 Hz 0.958

153 R Gn fL = 340 Hz, fU = 350 Hz 0.809

154 D Decrease fL = 4740 Hz, fU = 4990 Hz 0.970

155 R Median fL = 3020 Hz, fU = 3140 Hz 0.963

156 D Slope fL = 0 Hz, fU = 160 Hz 0.760

157 D Skewness fL = 3770 Hz, fU = 3850 Hz 0.953

158 F RMSr fL = 0 Hz, fU = 10 Hz 0.832

159 D Kurtosis fL = 1220 Hz, fU = 1260 Hz 0.931

160 F Centroid fL = 790 Hz, fU = 820 Hz 0.949

161 F Gn fL = 340 Hz, fU = 350 Hz 0.809

162 D Hs fL = 30 Hz, fU = 40 Hz 0.968

163 D Pn fL = 100 Hz, fU = 160 Hz 0.771

164 D Ratio L2H fth = 32 Hz 0.903

165 D Centroid fL = 3440 Hz, fU = 3600 Hz 0.977

166 F Spread fL = 2300 Hz, fU = 2360 Hz 0.966

167 D Gn fL = 340 Hz, fU = 350 Hz 0.809

168 F Spread fL = 4290 Hz, fU = 4310 Hz 0.949

169 D Fmax fL = 0 Hz, fU = 130 Hz 0.774

170 F Gr fL = 2820 Hz, fU = 4100 Hz 0.971

171 D Gs (Flatness) fL = 800 Hz, fU = 840 Hz 0.963

172 R Kurtosis fL = 0 Hz, fU = 330 Hz 0.807

173 R Kurtosis fL = 3850 Hz, fU = 3930 Hz 0.948

174 D Pn fL = 340 Hz, fU = 350 Hz 0.807

175 D Median fL = 4680 Hz, fU = 4780 Hz 0.953

176 D Decrease fL = 10 Hz, fU = 180 Hz 0.818

177 F Skewness fL = 1560 Hz, fU = 1660 Hz 0.954

178 F Fmax fL = 2680 Hz, fU = 2830 Hz 0.962

179 R Skewness fL = 0 Hz, fU = 760 Hz 0.783

180 F Kurtosis fL = 1220 Hz, fU = 1260 Hz 0.927

181 F Spread fL = 3370 Hz, fU = 3380 Hz 0.958

182 R PVn fL = 120 Hz, fU = 130 Hz 0.790

183 D Centroid fL = 4770 Hz, fU = 4890 Hz 0.967

no. pp feature name feature parameters coefBMC
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